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1 Overview of Probability

Before discussing randomized algorithms, we introduce the probability concepts necessary for this
course. Rather than observing a single deterministic event, probability distributions simultaneously
model all possible events of a random occurrence.

A random variable is a function that allows us to map events to another set. In this course,
random variables will map events to the real number line. Using random variables, we can perform
mathematical operations to infer properties about a random occurrence from a given distribution.

Definition 1 (Random Variable). A function from the set of events, £ to the real numbers is a
random variable, X : £ — R.

X ~ D means that X is sampled from distribution D.

Example 1.1. A fair dice roll where S = {1,2,3,4,5,6}, is written as X ~ Uniform([6]), where
each outcome is equiprobable.

Example 1.2. A random wvariable X that follows a Bernoulli distribution is written as X ~
Bernoulli(p) which means that Pr[X = 1] = p (i.e., success) and Pr[X =0] =1 —p (i.e., failure).

1.0.1 Probability Mass Function (PMF)

Probability mass functions (PMFs) are defined for discrete random variables. PMF's indicate the
probability that the outcome of a random variable will equal a given value. A formal definition is
provided below.

Definition 2. The probability mass function of a discrete random variable (€ is discrete) defined
as fx(z) =Pr[X =z] =Pr{ec £: X(e) = z}]

Remark 3. Note that PMFs are constrained such that ), c vy [x(z) = 1.

Example 1.3. In the ezample where X ~ Bernoulli(p), fx(1) = p and fx(0) =1—p. Here, p and
1 — p indicate the probability that the random variable X realizes the values 1 and 0 respectively.

1.0.2 Cumulative Distribution Function (CDF)

The cumulative distribution function (CDF) is defined for any distribution over a totally ordered
set, and can often be computed using the PMF. The CDF of a random variable X looks to compute
the probability that a realization of X will be below a given value.



Definition 4. The cumulative distribution function of a Fx(z) = Pr[X < x;] = >, Pr[X =
i) = Zigj fx (@)

1.0.3 Probability Density Function (PDF)
Definition 5. The probability density function is defined as %Fx(x) = fx(x).

The PDF is often viewed as the continuous analogue of the PMF, since the notion of mass functions
over continuous sample spaces does not make sense. Explicitly, if X is a continuous random variable,
Pr(X =xz) =0 for all z € R.

Remark 6. This equation has the following discrete equivalence: Fx(x) — Fx(x — 1) = fx(x).

1.0.4 Binomial Distribution

The binomial distribution is one of the most common discrete probability distributions. With
parameters n, and p, the binomial distribution models the number of successes from a set of n
independent binary events, each occurring with probability p.

This is analogous to the the sum of n i.i.d. Bernoulli random variables with parameter p.

Definition 7. X ~ Binomial(n,p) <= X =>_" | X; subject to X; ~ Bernoulli(p)
The following are properties of the binomial distribution:

1. X =0, with probability (1 —p)".

2. X =1, with probability n-p- (1 — p)»~ L.
The PMF for the binomial distribution is given as fx (k) = (Z) (L= p)

1.0.5 Events

Definition 8. An cvent is a set of realizations taken from the sample space of a random variable.

Example 1.4. Subsetting the set of possible outcomes from a fair dice roll, we can denote &epen, as
the event for rolling an even number.

1

Pr[feven] — 5

1.0.6 Conditional Probability

Definition 9. Given two events {4, {p, the probability of {4 given {p is denoted as Pr[éa|ép] =
PT[E?%]B]
Priép



Conditional probability is defined as the probability of an event happening under the assumption
that another event has happened. We can think of conditional probabilities as the probability
distribution of £4 on the restricted sample space where g has occurred.

Example 1.5. Going back to the fair dice example, let & be the event that the outcome of a dice
roll is 6. Under an unconditional probability, we get that Pr[&s] = %. If we wish to compute the
conditional probability of & given that all dice rolls in a sequence are even (Eeven), we get that

Pri&6 N Eeven] _

Pr{ge|€even] = Pri€even)

[IEoN
—_

1.0.7 Independence

In statistics, independence is used to ascertain whether or not two random variables A, B depend
on one another. A, B are said to be independent if the occurrence of the event £ 4 is not influenced
by the event £g.

Definition 10. Independence Two events, £4,&p are called independent <= Pr[{s NEp] =
Pr[€a]- Pr[¢g]. To denote that random variables A, B are independent, we use the notation A 1 B.

An equivalent statement of the above definition is that Pr{a|¢p] = Pr[a].

1.0.8 Expected Value

The expected value of a random variable X, also known as the mean or average, is the probability
weighted sum of the realization of all possible outcomes of X.

Definition 11. If S is the sample space of all possible events for X, we the expected value of a
function g(-) on X is equal to

Elg(X)] = Xpes 9(x) - fx(2) = [e59(x) - fx(2)da.
Example 1.6. Suppose that X ~ Uniform([6]).

1 1
EX]=1--+42--+43->+44.
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Example 1.7. Suppose that X ~ Bernoulli(p).

=

EX]=0-(1-p)+1-(p)=p

Example 1.8. Suppose that X ~ Binomial(n,p).
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=np (4)
The last line holds true, as ZZ;& (xil)!(((::ll))i(xil))!p’f_l(1—p)”_m sums over the PMF of a binomial

random variable with parameters (n — 1,p), and thus equals 1. To demonstrate a less tedious way
of computing the expectation of binomial random variables, the concept of linearity of expectations
18 introduced.

Theorem 12. (Linearity of Expectations) Let X be the weighted sum of a set of random variables.
If X = Z?Zl a; X;, where a; € R, and X; is a random variable, then

E[X]= E[Z a; Xi| = Zaz’E[Xi]

Due to the linearity of expected values, we can solve the expected value of a binomial random variable
X ~ Binomial(n,p) using the fact that a binomial random variable X is equivalent to the sum of
n Bernoulli random variables X; ~ Bernoulli(p)

By linearity of expectations,

n n

EIX]=) E[X]=) p=np

=1 i=1

1.0.9 Product of Expectations

Due to the convenience of linearity of expectations, one would hope that a similar result exists for
products of random variables X and Y. Unlike linearity of expectations, E[XY| = E[X]-E[Y]| <
X and Y are uncorrelated.

Example 1.9. The following is an example of the identity breaking down for correlated random
variables.

Let X =Y ~ Bernoulli(3)



1.0.10 Independence and Correlation

Correlation pxy between two random variables X,Y measures the strength of the linear relation-
ship between X and Y. |px y| € [0,1], with larger values indicating a stronger linear relationship,
and a px,y = 0 representing no linear relationship. A pair of random variables X,Y is said to be
uncorrelated when pxy = 0.

Theorem 13. If X and Y are independent random variables, then X andY are uncorrelated.

Proof.
E[XY] = Z Z zy-PriX =znY =y

r€Sz YESY

=Y ) ay PriX = 2] Pr[Y =y
TESy YESY

=) = PrX=2] ) y-Pr[Y =y
€Sy YESy

= Z x-PrX =z|- E[Y]
€Sy

=E[Y]- ) z-Pr[X =2

TE€SL
= E[X]- E[Y]

O

This theorem is not an if and only if. The following example shows a pair of uncorrelated random
variables that are not independent.

Example 1.10. Let X ~ Uniform/[-1,1], and Y ~ X?

12 2/
1 1 371
E[Y] = /_1 %me(ﬂr)d:U = ;/_1 2f($)dac = % [3] 1 = é(l?) _ (_1)3) _ é

1 1 24 1
E[XY] = /_1 %xmzf(x)dx = ;/_1 333f(x)dx = % [4] B = 2(14 - (*1)4) =0

Thus, E[XY| = E[X]|E[Y], which implies that X and Y are uncorrelated.

However, fy(1)fx(0) > 0, but Pr[(X = 0)N (Y =1)] = 0. Thus, we have shown that a pair of
random variables can be uncorrelated, but not independent.



1.0.11 Geometric Distribution
X ~ Geo(p) denotes that X follows a geometric distribution. This is analogous to treating X as

the number of tosses it takes before a weighted coin with probability p of landing heads lands on
heads. The PMF of this distribution is as follows:

fx(k)=(1—-p)"'p, Vk>1

We can compute the expected value of a Geometric random variable:

EIX] =) (1 —Pr[X <)

=0

= Pr[X > i
=0

= ZPI‘[X > 1]
=1

=22 (="'
=1 k=1t

=> (1-p) 1> (@-pyp
i=1 j=1

=> (1-p"!
=1

=> -
=1
1 & _

==Y (1-p)'p
p i=1

_ 1
p

Alternatively, > 2%, (1 — p)i~! = 1_(%_17) = ]%.

1.0.12 Dice Problem

The following dice problem from Elchanan Mossel’s blog illustrates the counter-intuitive nature of
conditional probabilities.

A dice is repeatedly thrown until it lands on a 6. Let T be the number of rolls it takes for a dice
to roll a 6, and let &,1) even be the event that that all dice rolls in a sequence are even. What is

E[T|§all even]?

Answering using intution from the geometric distribution, one might claim that E[T|€a1 even] = 3-
However, upon further inspection, we see that E[T | even] 1S equivalent to finding the expected


https://gilkalai.wordpress.com/2017/09/08/elchanan-mossels-amazing-dice-paradox-answers-to-tyi-30/

number of throws until the result is not a 2 or 4. Using the geometric distribution, we realize that

p = Pr[not{2,4}] = % Hence, E[T| a1 even] = % =3

1.1 Quicksort

Quicksort is a famous sorting algorithm that emphasizes the use of randomness and probabilistic
analysis. The algorithm is carried out in a divide and conquer manner by selecting a pivot and
partitioning elements on either side of the pivot. In algorithms like quicksort, and in future ran-
domized algorithms that we will see in the course, the emphasis will be on minimizing the expected
runtime and not the worst-case runtime.

Algorithm 1 Deterministic Quicksort

procedure QUICKSORT([z1, X2, ..., Tp])
pivot <— x1
Ssmaller — [ ]7 Slarger — [ ]
for i in 1:n do
if z; < pivot then
Ssmaller~append(xi)
else
Slarger'append(xi)
return[Quicksort(Sgmaiier ), pivot, Quicksort(Sigrger)]

In the Deterministic Quicksort presented in Algorithm 1, the runtime is dictated by arbitrary user

input. For example, if a user were to feed the array {n,n —1,...,2,1}, then there will be a total of
n-(n—1)

-~ = ©(n?) comparisons.

Alternatively, we can select the pivot uniformly at random. We will demonstrate that, in expecta-
tion, this will lead to a significantly faster running time.

Theorem 14. Let yi,...,y, be the correctly sorted list, and X =
comparisons for randomized quicksort where

i<j Xij denote the number of

X 1 wi,y; are compared
Y 0 otherwise

then

E[X] =2nlogn+ O(n)

Intuition: we usually will separate the sequence fairly evenly (%, %). That said, even when the split
is far from balanced (say, (0.9n,0.1n)), we will still obtain the desired runtime. Specifically, these
two types of splits lead to recurrences describing the number of comparisons which are, respectively,

C(n)=n—-1+2C(n/2) and C(n)=n—1+C(0.1n) + C(0.9n)



Solving either recurrences leads to a run time of O(nlogn). We proceed with the more formal
argument.

Proof. To determine the probability that y; and y; are compared, we need either y; or y; to be
chosen as a pivot before any of {y;;1,...,yj—1}. If one of the other pivots are chosen, then y; and

y; are split into two different sets, and will never be compared. This probability equals ]7%

= E[Xy]

i<j

ZZ T
=1 j= z+1‘7 -
n—1n— z+1
i=1 k=2
n—i+1n— 1

szl
n n+l—k

=zz%

" 2
k=2

“ 1
:(2n+2);k—4n

Using the definition of the harmonic numbers,

1 1 1
H, Z% O(logn) = logn+’y+%+0 2

Thus,
E[X] = (2n+2)H,, — 4n = 2nlogn + O(n).

1.1.1 Coupon Collector

In the coupon collector problem, we repeatedly sample from a set of n objects until at least one
copy of each distinct object is obtained. More explicitly, if X; ~ Uniform(|[n]) and T is the number
of draws before the every item {1,...,n} is seen, the coupon collector attempts to solve for E[T].

Let ¢t; = time to collect the i*" unique coupon after collecting i — 1 unique coupons. t; ~
Geometric(p).



Thus,

n n n 1 1

E[T] = n(logn + )

The expectation is not the only quantity of interest in the coupon collector problem. We also wish
to study its tail probabilities; we wish to create an upper bound R such that T exceeds R with low
probability (we define low probability as p < %)

Given a sequence of R draws for the coupon collector problem, T" exceeds R if at least one of the
n distinct objects has not been selected. Let Sl-R denote when item 17 is not observed in the first R
draws (Pr(Ef) = (1 - 1)F).

n

Pr(not done in first R draws) = Pr[u_, &Y < ZPr[SiR] = Z(l — E)R =n(l- l)R
i=1 i=1

Set R = Bnlogn

)R < n(efi)ﬁnlogn = ne*ﬁlogn — n(elogn)—/j _ n7/3+1

1
1_ =
n( -

since
1+zx<e,VzeR

Thus,
Pr(not done in first R draws) < n /11

1.2 Concentration Inequalities

Concentration inequalities define the magnitude of deviation that a random variable deviates from
its expected value. Though many random variables have high probability mass surrounding its
expectation, many random variables can strongly deviate from their expected values. For example,
consider

|| [Nl

X — {n subject to Pr[X =n] =

—n subject to Pr[X = —n] %

E[X] = 3(n—n) =0, but | X — E[X]| =n, where n can be taken to be arbitrarily large.

Most random variables are not as ill-behaved as the example given above. Specifically, if a random
variable is sufficiently “nice,” we can say that it will be “close” to its expected value. Our first
definition of “nice” will be fairly weak: simply that the random variable is non-negative. Later, we
will enforce stronger notions of “niceness,” leading to sharper concentration.



Theorem 15 (Markov’s Inequality). If X is a non-negative random variable, then

PrX >a] <

In other words,

Proof.

Thus,

Note that Markov’s inequality is tight, realized by the following example:

L subject to Pr[X =a] =%
o subject to Pr[X = 0] = _%
Then,
t FEX
BIX] =t PrX >a = L = BT
a a

Markov’s inequality is the first of many concentration inequalities that we will be covering in this
course. Intuitively, it indicates how well behaved a random variable is with respect to the first
moment, the mean. Understandably, we will be using Markov’s inequality as a tool in the coupon
collector problem as follows:

Pr[T > pnlogn| <

|~

Notice that this bound is different than the one we obtained above.

10



1.2.1 Variance

The variance of a random variable is the ‘centered second moment.’” It serves as a measure of how
much the random variable fluctuates about its expected value.

Var(X) = B[(X - B[X])’] = B[X?] - E[X]?

Proof.
Var(X) = E[(X — E[X])?] = E[X? - 2XE[X] + E[X)}]
= E[X? - 2E[XE[X]] + E[E[X]*]
= E[X?] - 2E[X|E[X] + E[X?]
= E[X? - E[X]?

11
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