
CS 761: Randomized Algorithms Fall 2019

Lecture 10 — November 15, 2019

Prof. Gautam Kamath By: Joshua McGrath, Kam Chuen Tung
Edited by Vedat Levi Alev

Disclaimer: These notes have not been subject to the usual scrutiny reserved for formal publica-
tions.

Throughout the notes, ‖·‖ denotes the 2-norm.

1 Spectral Sparsification

We recall the definition of a cut approximator.

Definition 1. (cut approximator) A graph H = (V,E′) is a ε-cut approximator of G = (V,E) if
(1− ε)wG(δ(S)) ≤ wH(δ(S)) ≤ (1 + ε)wG(δ(S)) for any partition of the graph into S, V \ S.

Spectral approximation is a generalization of cut approximation. First we will need to review some
Linear Algebra and Graph Theory.

Definition 2. (Positive Semidefinite Matrices) A matrix M ∈ Rn×n is positive semidefinite if for
any x ∈ Rn, x>Mx ≥ 0.

We denote a positive semidefinite matrix M by writing M < 0.

Definition 3. (Graph Laplacian) Given a weighted graph G = (V,E,w) we define the Laplacian
matrix of G as

L = D −A

Where A is the weighted adjacency matrix of G and D is the diagonal matrix with Di =
n∑
k=1

w(i, k)

Observation 4. For any graph G its Laplacian LG is positive semidefinite.

Proof. Begin by decomposing LG =
∑

e∈E Le where Le is the Laplacian of the graph G modified
to have only the edge e = (i, j). Le = beb

>
e where be is 0 everywhere except entries i, j where be is

−
√
w(i, j) and

√
w(i, j) respectively. Using this decomposition of the matrix we consider x>LGx

x>LGx = x>(
∑

Le)x

=
∑

x>beb
>
e x

=
∑(

x>be

)2
=
∑

w(i, j)(xi − xj)2 ≥ 0

Therefore LG is positive semidefinite.

1

Given these definitions we generalize the idea of a cut approximator.

Definition 5. (Spectral Approximator) A graph H is a ε-spectral approximator of G for error
paramter ε ≤ 1

(1− ε)LG 4 LH 4 (1 + ε)LG

or equivalently, for all x ∈ Rn

(1− ε)x>LGx ≤ x>LHx ≤ (1 + ε)x>LGx

Fact 6. Any spectral approximator is also a cut approximator

Proof. Let xS(i) = 1 if i ∈ S and 0 otherwise for any S ⊆ V . Then

x>SLGxS =
∑

(i,j)∈E

w(i, j)(xS(i)− xS(j))2 =
∑

(i,s)∈E(S)

w(i, j)(xS(i)− xS(j))2 = WG(δ(S))

Where E(S) is the edges of G with exactly one endpoint in S. Then any graph which satisfies
the spectral condition satisfies the cut approximator condition, because we asked for the spectral
condition to hold for any x ∈ Rn.

We can now prove the following Theorem from Benczur and Karger ([3]):

Theorem 7. Given a graph G and an error parameter ε ≤ 1 there exists an ε-cut approximation
G′ which has O(n log n/ε2) edges.

We will prove this by the following reduction. Suppose we have vectors v1, . . . , vm ∈ Rn such that
m∑
i=1

viv
>
i = In, then there exists s1, . . . sm ∈ R with O

(
n log n/ε2

)
non-zero entries such that

(1− ε)In ≤
m∑
i=1

siviv
>
i ≤ (1 + ε)In

Given any matrix M we can represent it by its eigendecomposition M =
n∑
i=1

λiuiu
>
i and then we

can define the pseudoinverse of M as M † =
n∑
i=1

1
λi
uiu
>
i . Finally we can represent In in terms of the

laplacian of a graph by the equation

I = L
−1/2
G LGL

−1/2
G

=
∑
e∈E

(
L
−1/2
G be

)(
b>e L

−1/2
G

)
=
∑
e∈E

vev
>
e ,

where ve = L
−1/2
G be.

We can now solve the problem with sampling, where we sample non-uniformly in order to preserve
In. Pick the vector vi with probability p = ‖vi‖2, if it is chosen set si = 1

‖vi‖2
else set si = 0. We

2

then have that in E
[
siviv

>
i

]
=

viv
>
i

‖vi‖2
· Pr(vi is chosen) = viv

>
i . Hence by linearity of expectation

we have the correct sum, In. We will do it many rounds so that, using the Chernoff bound we can
obtain tight concentration for

∑
i siviv

>
i and that O(n log n/ε2) of the si are nonzero. Because only

the smaller vectors have been removed for the summation we can show we have tight concentration.

Now we describe the algorithm for finding si’s in detail.

1. Set F := ∅, si := 0.

2. Repeat C = 6 log n/ε2 times:

• For i = 1..m, choose vi w.p. ‖vi‖2.
• In case vi is chosen, set F := F ∪ {i} and increase si by 1

C‖vi‖2
.

To analyse the algorithm, we prove the following two lemmas:

Lemma 8. |F| = O(n logn
ε2

) with probability ≥ 0.9.

Proof. We upper-bound E[|F|] by C ·
∑

i Pr[vi is chosen]. Computing the latter boils down to
calculating

∑
i ‖vi‖

2. Since ∑
i ‖vi‖

2 =
∑

i v
>
i vi

=
∑

i tr(v>i vi)
=

∑
i tr(viv

>
i)

= tr(
∑

i viv
>
i)

= tr(In)
= n,

it follows that E[|F|] ≤ Cn = O(n log n/ε2). The lemma follows by Markov’s inequality.

Lemma 9. (1− ε)In �
∑

i siviv
>
i � (1 + ε)In with high probability.

To prove this lemma, we need to introduce Matrix Chernoff bound. Below is the statement we
need.

Lemma 10. Given random independent (symmetric) n × n matrices M1, . . . ,Mk with 0 � Mi �
R · In. Suppose µmin · In �

∑
i E[Mi] � µmax · In. Then, for 0 ≤ ε ≤ 1,

Pr

[
λmax(

∑
i

Mi) ≥ µmax + ε

]
≤ n · exp

(
−ε2 · µmax

3R

)
and

Pr

[
λmin(

∑
i

Mi) ≤ µmin − ε

]
≤ n · exp

(
−ε2 · µmin

2R

)
.

For proof, refer to standard references on matrix Chernoff bound, for example [1] and [5] (Section
5). Now we return to proving the lemma.

3

Proof. Apply matrix Chernoff bound on the random matrices Mi,j , with i ∈ [C] and j ∈ [m]. Mi,j

equals vjv
>
j /C ‖vj‖

2 if vj is chosen in round i, and equals 0 otherwise. Then,

∑
i,j E[Mi,j] =

∑
i,j ‖vj‖

2 × (vjv
>
j /C ‖vj‖

2)

= C ×
∑

j(vjv
>
j /C)

=
∑

j(vjv
>
j)

= In.

Note also that 0 � vjv
>
j � In, and so 0 � Mi,j � 1

C · In. Apply matrix Chernoff bound with
µmin = µmax = 1 and R = 1/C, we have

Pr[(1− ε)In �
∑

iMi � (1 + ε)In] ≥ 1− n · exp
(
−ε2
3R

)
− n · exp

(
−ε2
2R

)
= 1− n · n−2 − n · n−3
≥ 1− 2/n.

The proof follows by noting that si’s are defined exactly so that∑
i,j

Mi,j =
∑
i

siviv
>
i .

Therefore, the algorithm works as desired.

Remark 11. For construction of graph spectral sparsifier with O(n/ε2) edges, refer to [2].

2 Faster Linear Algebra

The least squares problem is: given a matrix A ∈ Rn×d and b ∈ Rd, we want to find x =
arg minx∈Rd ‖Ax− b‖. A textbook solution takes Ω(n poly(d)). We will analyze an Õ (nd+ poly(d/ε))
solution using the sketch-and solve paradigm. First we will compress A into A′ ∈ Rk×d where
k = poly(d/ε). This compression will make use of the subspace embedding.

Definition 12. (Subspace Embedding) A ε-`2 subspace embedding for the column space of A ∈ Rn×d
is a matrix S such that

(1− ε) ‖Ax‖2 ≤ ‖(SA)x‖2 ≤ (1 + ε) ‖Ax‖2

for all x ∈ Rd. Here

Suppose S ∈ Rk×n is a subspace embedding (and sketch matrix) where k is poly(d/ε). Then we
can solve least squares in O(poly(d/ε)) time (and the projection takes O(nd) time). If x is the
optimal solution for the sketched least squares and x∗ in the optimal solution for the original least
squares. Then by definition of the subspace embedding we have that

‖Ax− b‖ ≤ 1

1− ε
‖S(Ax− b)‖ ≤ 1 + ε

1− ε
‖Ax∗ − b‖

Now we need to find a cover, which is basically a ε-lattice over the unit ball in Rd. We can find a
O(d/ε2) embedding using the Johnson-Lindenstrauss Lemma.

4

3 Algebraic Method

Certain tasks involve checking whether two objects are identical. The algebraic method consists of
three steps:

1. Construct polynomials (with coefficients in finite field F) from the two objects,

2. Evaluate the polynomials at random points, and

3. Compare their values.

Consider the following example. Alice and Bob each has one binary string of length d. Call Alice’s
string a = a1a2 . . . ad and Bob’s string b = b1b2 . . . bd. They want to determine whether a = b while
minimizing communication.

Fact 13. For any deterministic algorithm, they must communicate Ω(d) bits.

Interestingly, there exists randomized algorithm that takes O(log d) bits of communication.

Alice and Bob first agree on a finite field F = Fp for a large prime p. Alice forms the polyno-

mial A(x) :=
∑d

i=1 aix
i ∈ F[x] and Bob B(x) :=

∑d
i=1 bix

i ∈ F[x]. Alice chooses random r ∈ F,
computes r and A(r), then sends r and A(r) to Bob. Bob in turn computes B(r) and tells Alice
whether A(r) = B(r).

To evaluate the algorithm, observe that:

Observation 14. Each round of communication takes O(log p) bits.

Observation 15. If A 6= B, then (A−B) is a non-zero polynomial in F [x] having degree ≤ d. So
(A−B) has at most d roots. That means the probability that A(r) = B(r) is at most d/p.

Suppose we choose p = Θ(d2) (this is possible, because there exists prime number in [n, 2n] for
any n > 0). Then, it takes O(log d2) = O(log d) bits per round of communication, with a high
probability 1−O(1/d) of proving that A 6= B.

One advantage of using polynomials is that the number of zeros can be controlled by its degree.
This is made precise in the following lemma:

Lemma 16. (Schwartz-Zippel) Given a multivariate polynomial Q ∈ F[x1, . . . , xn] with degQ ≤ d
(that is, for each monomial xd11 x

d2
2 . . . xdnn , one has

∑
i di ≤ d). Fix S ⊆ F and choose r1, . . . , rn

uniformly at random from S. Then, if Q 6= 0,

Pr[Q(r1, . . . , rn) = 0] ≤ d

|S|
.

Proof. The proof proceeds by induction on n.

(Base case: n = 1) A degree-d univariate polynomial has at most d roots, so the probability that
the chosen number r1 is a root of Q is at most d/|S|.

5

(Induction step) Let’s write the polynomial Q as

k∑
i=0

Qi(x2, . . . , xn)xi1

with k ≤ d.

There are two cases: Qk(r2, . . . , rn) = 0 and Qk(r2, . . . , rn) 6= 0. In the second case, once the values
r2, . . . , rn are fixed, we can consider Q to be a univariate polynomial in x1, of degree k.

Note that Qk is a (n − 1)-variate polynomial of degree at most d − k. Therefore, (writing r for
(r1, . . . , rn) and r−1 for (r2, . . . , rn) as shorthand),

Pr[Q(r) = 0]
= Pr[Q(r) = 0 |Qk(r−1) = 0] · Pr[Qk(r−1) = 0]+

Pr[Q(r) = 0 |Qk(r−1) 6= 0] · Pr[Qk(r−1) 6= 0]
≤ 1 · (d− k)/|S|+ k/|S| · 1
= d/|S|.

Using the algebraic method, we can design an efficient algorithm for determining if a bipartite
graph admits a perfect matching. Given a bipartite graph G with node set U ∪ V , |U | = |V | = n
and edge set E ⊆ U × V . We can build the matrix A = (aij), where aij = xij if (i, j) ∈ E and
aij = 0 otherwise. Then,

Observation 17. det(A) can be regarded as a polynomial in F[x11, x12, . . . , xnn] (n2 variables in
total) and of degree ≤ n. Moreover, G admits a perfect matching if and only if det(A) is not the
zero polynomial.

The latter follows from the formula

det(A) =
∑
σ∈Sn

(−1)sgn(σ)
∏
i

aiσ(i),

that each σ corresponds to a potential matching between U and V , and that the monomials will not
cancel out each other.

Then, we have a simple algorithm: choose F = Fp. For each xij , randomly assign to it a value in
F, then compute the determinant of the (scalar) matrix Ā.

For p = Θ(n2), the probability of false negative (det(A) 6= 0 as polynomial but det(Ā) = 0) is 1/n.

Using Gaussian elimination, this gives an O(n3) algorithm. An O(nω) algorithm also exists, using a
technique called “blockwise inversion” to attempt to compute Ā−1 and, hence, determine whether
it is singular.

(If we account for the cost of doing arithmetic in F, then there is an additional polylog(n) factor.)

This is not good enough, as often we would like to find a perfect matching if it exists. The idea
of “self-reducibility” is helpful here: remove an edge and check if the resultant graph still has a

6

perfect matching. If yes, remove that edge. If no, add that edge to the matching and remove the
two nodes that the edge connects. This has a time complexity of O(m · nω).

We can do better than this, with the following two tools from linear algebra:

Fact 18. For invertible n×n matrix M , let ci,j be the (i, j)-cofactor of M , i.e. ci,j := (−1)i+j det(M−i,−j).
(We use the shorthand M−i,−j to denote the (n− 1)× (n− 1) matrix which is formed by removing
the i-th row and the j-th column of from M .) Then,

(M−1)ji =
ci,j

det(M)
.

Now put M := Ā. The significance is that, for edge (i, j), it can be included in the perfect matching
if ci,j 6= 0. This gives an O(n(nω +m)) = O(nω+1) algorithm, where O(nω) is the time for matrix
inversion and O(m) is the time to find an edge to include in the matching; note that we need to
do both steps n times.

To achieve an even better time complexity, we use the following formula.

Fact 19. (Fast rank-1 update) Using the Sherman-Morrison formula, we can compute (Ā+uv>)−1,
given Ā−1, in O(n2) time. Let B̄ := Ā−i,−j. Then one can form[

1 0
0 B̄

]
from Ā using a constant number of rank-1 updates.

This allows us to compute B̄−1 from Ā−1 with O(n2) time instead of O(nω) time, bringing the
overall time complexity down to O(nω + n× n2) = O(n3).

Remark 20. An O(nω) algorithm exists; see, for example, [4].

References

[1] Rudolf Ahlswede and Andreas Winter. Strong converse for identification via quantum channels.
IEEE Transactions on Information Theory, 48(3):569–579, 2002.

[2] Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. SIAM
Journal on Computing, 41(6):1704–1721, 2012.

[3] András A Benczúr and David R Karger. Randomized approximation schemes for cuts and flows
in capacitated graphs. SIAM Journal on Computing, 44(2):290–319, 2015.

[4] Marcin Mucha and Piotr Sankowski. Maximum matchings via gaussian elimination. In 45th
Annual IEEE Symposium on Foundations of Computer Science, pages 248–255. IEEE, 2004.

[5] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of compu-
tational mathematics, 12(4):389–434, 2012.

7

