CS 761: Randomized Algorithms Lecture 10 — November 15, 2019

Prof. Gautam Kamath

By: Joshua McGrath, Kam Chuen Tung Edited by Vedat Levi Alev

Fall 2019

Disclaimer: These notes have not been subject to the usual scrutiny reserved for formal publications.

Throughout the notes, $\|\cdot\|$ denotes the 2-norm.

1 Spectral Sparsification

We recall the definition of a cut approximator.

Definition 1. (cut approximator) A graph H = (V, E') is a ε -cut approximator of G = (V, E) if $(1 - \varepsilon)w_G(\delta(S)) \le w_H(\delta(S)) \le (1 + \varepsilon)w_G(\delta(S))$ for any partition of the graph into $S, V \setminus S$.

Spectral approximation is a generalization of cut approximation. First we will need to review some Linear Algebra and Graph Theory.

Definition 2. (Positive Semidefinite Matrices) A matrix $M \in \mathbb{R}^{n \times n}$ is positive semidefinite if for any $x \in \mathbb{R}^n$, $x^{\top}Mx \ge 0$.

We denote a positive semidefinite matrix M by writing $M \succeq 0$.

Definition 3. (Graph Laplacian) Given a weighted graph G = (V, E, w) we define the Laplacian matrix of G as

L = D - A

Where A is the weighted adjacency matrix of G and D is the diagonal matrix with $D_i = \sum_{k=1}^n w(i,k)$

Observation 4. For any graph G its Laplacian L_G is positive semidefinite.

Proof. Begin by decomposing $L_G = \sum_{e \in E} L_e$ where L_e is the Laplacian of the graph G modified to have only the edge e = (i, j). $L_e = b_e b_e^{\top}$ where b_e is 0 everywhere except entries i, j where b_e is $-\sqrt{w(i, j)}$ and $\sqrt{w(i, j)}$ respectively. Using this decomposition of the matrix we consider $x^{\top} L_G x$

$$x^{\top} L_G x = x^{\top} (\sum L_e) x$$

= $\sum x^{\top} b_e b_e^{\top} x$
= $\sum (x^{\top} b_e)^2 = \sum w(i,j)(x_i - x_j)^2 \ge 0$

Therefore L_G is positive semidefinite.

Given these definitions we generalize the idea of a cut approximator.

Definition 5. (Spectral Approximator) A graph H is a ε -spectral approximator of G for error paramter $\varepsilon \leq 1$

$$(1-\varepsilon)L_G \preccurlyeq L_H \preccurlyeq (1+\varepsilon)L_G$$

or equivalently, for all $x \in \mathbb{R}^n$

$$(1-\varepsilon)x^{\top}L_Gx \le x^{\top}L_Hx \le (1+\varepsilon)x^{\top}L_Gx$$

Fact 6. Any spectral approximator is also a cut approximator

Proof. Let $x_S(i) = 1$ if $i \in S$ and 0 otherwise for any $S \subseteq V$. Then

$$x_S^{\top} L_G x_S = \sum_{(i,j) \in E} w(i,j) (x_S(i) - x_S(j))^2 = \sum_{(i,s) \in E(S)} w(i,j) (x_S(i) - x_S(j))^2 = W_G(\delta(S))$$

Where E(S) is the edges of G with exactly one endpoint in S. Then any graph which satisfies the spectral condition satisfies the cut approximator condition, because we asked for the spectral condition to hold for any $x \in \mathbb{R}^n$.

We can now prove the following Theorem from Benczur and Karger ([3]):

Theorem 7. Given a graph G and an error parameter $\varepsilon \leq 1$ there exists an ε -cut approximation G' which has $O(n \log n/\varepsilon^2)$ edges.

We will prove this by the following reduction. Suppose we have vectors $v_1, \ldots, v_m \in \mathbb{R}^n$ such that $\sum_{i=1}^m v_i v_i^\top = I_n$, then there exists $s_1, \ldots, s_m \in \mathbb{R}$ with $O\left(n \log n/\varepsilon^2\right)$ non-zero entries such that

$$(1-\varepsilon)I_n \le \sum_{i=1}^m s_i v_i v_i^\top \le (1+\varepsilon)I_n$$

Given any matrix M we can represent it by its eigendecomposition $M = \sum_{i=1}^{n} \lambda_i u_i u_i^{\top}$ and then we can define the pseudoinverse of M as $M^{\dagger} = \sum_{i=1}^{n} \frac{1}{\lambda_i} u_i u_i^{\top}$. Finally we can represent I_n in terms of the laplacian of a graph by the equation

$$\begin{split} I &= L_G^{-1/2} L_G L_G^{-1/2} \\ &= \sum_{e \in E} \left(L_G^{-1/2} b_e \right) \left(b_e^\top L_G^{-1/2} \right) \\ &= \sum_{e \in E} v_e v_e^\top, \end{split}$$

where $v_e = L_G^{-1/2} b_e$.

We can now solve the problem with sampling, where we sample non-uniformly in order to preserve I_n . Pick the vector v_i with probability $p = ||v_i||^2$, if it is chosen set $s_i = \frac{1}{||v_i||^2}$ else set $s_i = 0$. We

then have that in $E\left[s_i v_i v_i^{\top}\right] = \frac{v_i v_i^{\top}}{\|v_i\|^2} \cdot \Pr(v_i \text{ is chosen}) = v_i v_i^{\top}$. Hence by linearity of expectation we have the correct sum, I_n . We will do it many rounds so that, using the Chernoff bound we can obtain tight concentration for $\sum_i s_i v_i v_i^{\top}$ and that $O(n \log n/\varepsilon^2)$ of the s_i are nonzero. Because only the smaller vectors have been removed for the summation we can show we have tight concentration.

Now we describe the algorithm for finding s_i 's in detail.

- 1. Set $\mathcal{F} := \emptyset, s_i := 0$.
- 2. Repeat $C = 6 \log n / \varepsilon^2$ times:
 - For i = 1..m, choose v_i w.p. $||v_i||^2$.
 - In case v_i is chosen, set $F := F \cup \{i\}$ and increase s_i by $\frac{1}{C||v_i||^2}$.

To analyse the algorithm, we prove the following two lemmas:

Lemma 8. $|\mathcal{F}| = O(\frac{n \log n}{\varepsilon^2})$ with probability ≥ 0.9 .

Proof. We upper-bound $\mathbb{E}[|\mathcal{F}|]$ by $C \cdot \sum_{i} Pr[v_i \text{ is chosen}]$. Computing the latter boils down to calculating $\sum_{i} ||v_i||^2$. Since

$$\begin{split} \sum_{i} \|v_{i}\|^{2} &= \sum_{i} v_{i}^{\top} v_{i} \\ &= \sum_{i} \operatorname{tr}(v_{i}^{\top} v_{i}) \\ &= \sum_{i} \operatorname{tr}(v_{i} v_{i}^{\top}) \\ &= \operatorname{tr}(\sum_{i} v_{i} v_{i}^{\top}) \\ &= \operatorname{tr}(I_{n}) \\ &= n, \end{split}$$

it follows that $\mathbb{E}[|\mathcal{F}|] \leq Cn = O(n \log n/\varepsilon^2)$. The lemma follows by Markov's inequality.

Lemma 9. $(1-\varepsilon)I_n \preceq \sum_i s_i v_i v_i^\top \preceq (1+\varepsilon)I_n$ with high probability.

To prove this lemma, we need to introduce Matrix Chernoff bound. Below is the statement we need.

Lemma 10. Given random independent (symmetric) $n \times n$ matrices M_1, \ldots, M_k with $0 \leq M_i \leq R \cdot I_n$. Suppose $\mu_{\min} \cdot I_n \leq \sum_i \mathbb{E}[M_i] \leq \mu_{\max} \cdot I_n$. Then, for $0 \leq \varepsilon \leq 1$,

$$Pr\left[\lambda_{\max}(\sum_{i} M_{i}) \ge \mu_{\max} + \varepsilon\right] \le n \cdot \exp\left(\frac{-\varepsilon^{2} \cdot \mu_{\max}}{3R}\right)$$
$$Pr\left[\lambda_{\min}(\sum_{i} M_{i}) \le \mu_{\min} - \varepsilon\right] \le n \cdot \exp\left(\frac{-\varepsilon^{2} \cdot \mu_{\min}}{2R}\right).$$

and

For proof, refer to standard references on matrix Chernoff bound, for example [1] and [5] (Section 5). Now we return to proving the lemma.

Proof. Apply matrix Chernoff bound on the random matrices $M_{i,j}$, with $i \in [C]$ and $j \in [m]$. $M_{i,j}$ equals $v_j v_j^\top / C ||v_j||^2$ if v_j is chosen in round *i*, and equals 0 otherwise. Then,

$$\sum_{i,j} \mathbb{E}[M_{i,j}] = \sum_{i,j} \|v_j\|^2 \times (v_j v_j^\top / C \|v_j\|^2)$$

= $C \times \sum_j (v_j v_j^\top / C)$
= $\sum_j (v_j v_j^\top)$
= $I_n.$

Note also that $0 \leq v_j v_j^{\top} \leq I_n$, and so $0 \leq M_{i,j} \leq \frac{1}{C} \cdot I_n$. Apply matrix Chernoff bound with $\mu_{\min} = \mu_{\max} = 1$ and R = 1/C, we have

$$Pr[(1-\varepsilon)I_n \preceq \sum_i M_i \preceq (1+\varepsilon)I_n] \geq 1 - n \cdot \exp\left(\frac{-\varepsilon^2}{3R}\right) - n \cdot \exp\left(\frac{-\varepsilon^2}{2R}\right) \\ = 1 - n \cdot n^{-2} - n \cdot n^{-3} \\ \geq 1 - 2/n.$$

The proof follows by noting that s_i 's are defined exactly so that

$$\sum_{i,j} M_{i,j} = \sum_{i} s_i v_i v_i^{\top}.$$

Therefore, the algorithm works as desired.

Remark 11. For construction of graph spectral sparsifier with $O(n/\varepsilon^2)$ edges, refer to [2].

2 Faster Linear Algebra

The least squares problem is: given a matrix $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^d$, we want to find $x = \arg\min_{x \in \mathbb{R}^d} ||Ax - b||$. A textbook solution takes $\Omega(n \operatorname{poly}(d))$. We will analyze an $\tilde{O}(nd + \operatorname{poly}(d/\varepsilon))$ solution using the sketch-and solve paradigm. First we will compress A into $A' \in \mathbb{R}^{k \times d}$ where $k = \operatorname{poly}(d/\varepsilon)$. This compression will make use of the subspace embedding.

Definition 12. (Subspace Embedding) $A \in -\ell_2$ subspace embedding for the column space of $A \in \mathbb{R}^{n \times d}$ is a matrix S such that

$$(1 - \varepsilon) ||Ax||^2 \le ||(SA)x||^2 \le (1 + \varepsilon) ||Ax||^2$$

for all $x \in \mathbb{R}^d$. Here

Suppose $S \in \mathbb{R}^{k \times n}$ is a subspace embedding (and sketch matrix) where k is $poly(d/\varepsilon)$. Then we can solve least squares in $O(poly(d/\varepsilon))$ time (and the projection takes O(nd) time). If x is the optimal solution for the sketched least squares and x^* in the optimal solution for the original least squares. Then by definition of the subspace embedding we have that

$$||Ax - b|| \le \frac{1}{1 - \varepsilon} ||S(Ax - b)|| \le \frac{1 + \varepsilon}{1 - \varepsilon} ||Ax^* - b||$$

Now we need to find a cover, which is basically a ε -lattice over the unit ball in \mathbb{R}^d . We can find a $O(d/\varepsilon^2)$ embedding using the Johnson-Lindenstrauss Lemma.

3 Algebraic Method

Certain tasks involve checking whether two objects are identical. The algebraic method consists of three steps:

- 1. Construct polynomials (with coefficients in finite field \mathbb{F}) from the two objects,
- 2. Evaluate the polynomials at random points, and
- 3. Compare their values.

Consider the following example. Alice and Bob each has one binary string of length d. Call Alice's string $a = a_1 a_2 \dots a_d$ and Bob's string $b = b_1 b_2 \dots b_d$. They want to determine whether a = b while minimizing communication.

Fact 13. For any deterministic algorithm, they must communicate $\Omega(d)$ bits.

Interestingly, there exists randomized algorithm that takes $O(\log d)$ bits of communication.

Alice and Bob first agree on a finite field $\mathbb{F} = \mathbb{F}_p$ for a large prime p. Alice forms the polynomial $A(x) := \sum_{i=1}^d a_i x^i \in \mathbb{F}[x]$ and Bob $B(x) := \sum_{i=1}^d b_i x^i \in \mathbb{F}[x]$. Alice chooses random $r \in \mathbb{F}$, computes r and A(r), then sends r and A(r) to Bob. Bob in turn computes B(r) and tells Alice whether A(r) = B(r).

To evaluate the algorithm, observe that:

Observation 14. Each round of communication takes $O(\log p)$ bits.

Observation 15. If $A \neq B$, then (A - B) is a non-zero polynomial in F[x] having degree $\leq d$. So (A - B) has at most d roots. That means the probability that A(r) = B(r) is at most d/p.

Suppose we choose $p = \Theta(d^2)$ (this is possible, because there exists prime number in [n, 2n] for any n > 0). Then, it takes $O(\log d^2) = O(\log d)$ bits per round of communication, with a high probability 1 - O(1/d) of proving that $A \neq B$.

One advantage of using polynomials is that the number of zeros can be controlled by its degree. This is made precise in the following lemma:

Lemma 16. (Schwartz-Zippel) Given a multivariate polynomial $Q \in \mathbb{F}[x_1, \ldots, x_n]$ with deg $Q \leq d$ (that is, for each monomial $x_1^{d_1} x_2^{d_2} \ldots x_n^{d_n}$, one has $\sum_i d_i \leq d$). Fix $S \subseteq \mathbb{F}$ and choose r_1, \ldots, r_n uniformly at random from S. Then, if $Q \neq 0$,

$$Pr[Q(r_1,\ldots,r_n)=0] \le \frac{d}{|S|}.$$

Proof. The proof proceeds by induction on n.

(Base case: n = 1) A degree-d univariate polynomial has at most d roots, so the probability that the chosen number r_1 is a root of Q is at most d/|S|.

(Induction step) Let's write the polynomial Q as

$$\sum_{i=0}^k Q_i(x_2,\ldots,x_n) x_1^i$$

with $k \leq d$.

There are two cases: $Q_k(r_2, \ldots, r_n) = 0$ and $Q_k(r_2, \ldots, r_n) \neq 0$. In the second case, once the values r_2, \ldots, r_n are fixed, we can consider Q to be a univariate polynomial in x_1 , of degree k.

Note that Q_k is a (n-1)-variate polynomial of degree at most d-k. Therefore, (writing r for (r_1, \ldots, r_n) and r_{-1} for (r_2, \ldots, r_n) as shorthand),

$$\begin{aligned} ⪻[Q(r) = 0] \\ &= Pr[Q(r) = 0 \mid Q_k(r_{-1}) = 0] \cdot Pr[Q_k(r_{-1}) = 0] + \\ ⪻[Q(r) = 0 \mid Q_k(r_{-1}) \neq 0] \cdot Pr[Q_k(r_{-1}) \neq 0] \\ &\leq 1 \cdot (d-k)/|S| + k/|S| \cdot 1 \\ &= d/|S|. \end{aligned}$$

Using the algebraic method, we can design an efficient algorithm for determining if a bipartite graph admits a perfect matching. Given a bipartite graph G with node set $U \cup V$, |U| = |V| = n and edge set $E \subseteq U \times V$. We can build the matrix $A = (a_{ij})$, where $a_{ij} = x_{ij}$ if $(i, j) \in E$ and $a_{ij} = 0$ otherwise. Then,

Observation 17. det(A) can be regarded as a polynomial in $\mathbb{F}[x_{11}, x_{12}, \ldots, x_{nn}]$ (n² variables in total) and of degree $\leq n$. Moreover, G admits a perfect matching if and only if det(A) is not the zero polynomial.

The latter follows from the formula

$$\det(A) = \sum_{\sigma \in S_n} (-1)^{sgn(\sigma)} \prod_i a_{i\sigma(i)},$$

that each σ corresponds to a potential matching between U and V, and that the monomials will not cancel out each other.

Then, we have a simple algorithm: choose $\mathbb{F} = \mathbb{F}_p$. For each x_{ij} , randomly assign to it a value in \mathbb{F} , then compute the determinant of the (scalar) matrix \overline{A} .

For $p = \Theta(n^2)$, the probability of false negative $(\det(A) \neq 0$ as polynomial but $\det(\bar{A}) = 0$ is 1/n.

Using Gaussian elimination, this gives an $O(n^3)$ algorithm. An $O(n^{\omega})$ algorithm also exists, using a technique called "blockwise inversion" to attempt to compute \bar{A}^{-1} and, hence, determine whether it is singular.

(If we account for the cost of doing arithmetic in \mathbb{F} , then there is an additional polylog(n) factor.)

This is not good enough, as often we would like to find a perfect matching if it exists. The idea of "self-reducibility" is helpful here: remove an edge and check if the resultant graph still has a

perfect matching. If yes, remove that edge. If no, add that edge to the matching and remove the two nodes that the edge connects. This has a time complexity of $O(m \cdot n^{\omega})$.

We can do better than this, with the following two tools from linear algebra:

Fact 18. For invertible $n \times n$ matrix M, let $c_{i,j}$ be the (i, j)-cofactor of M, i.e. $c_{i,j} := (-1)^{i+j} \det(M_{-i,-j})$. (We use the shorthand $M_{-i,-j}$ to denote the $(n-1) \times (n-1)$ matrix which is formed by removing the *i*-th row and the *j*-th column of from M.) Then,

$$(M^{-1})_{ji} = \frac{c_{i,j}}{\det(M)}.$$

Now put $M := \overline{A}$. The significance is that, for edge (i, j), it can be included in the perfect matching if $c_{i,j} \neq 0$. This gives an $O(n(n^{\omega} + m)) = O(n^{\omega+1})$ algorithm, where $O(n^{\omega})$ is the time for matrix inversion and O(m) is the time to find an edge to include in the matching; note that we need to do both steps n times.

To achieve an even better time complexity, we use the following formula.

Fact 19. (Fast rank-1 update) Using the Sherman-Morrison formula, we can compute $(\bar{A}+uv^{\top})^{-1}$, given \bar{A}^{-1} , in $O(n^2)$ time. Let $\bar{B} := \bar{A}_{-i,-j}$. Then one can form

$$\begin{bmatrix} 1 & 0 \\ 0 & \bar{B} \end{bmatrix}$$

from A using a constant number of rank-1 updates.

This allows us to compute \bar{B}^{-1} from \bar{A}^{-1} with $O(n^2)$ time instead of $O(n^{\omega})$ time, bringing the overall time complexity down to $O(n^{\omega} + n \times n^2) = O(n^3)$.

Remark 20. An $O(n^{\omega})$ algorithm exists; see, for example, [4].

References

- [1] Rudolf Ahlswede and Andreas Winter. Strong converse for identification via quantum channels. *IEEE Transactions on Information Theory*, 48(3):569–579, 2002.
- [2] Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. SIAM Journal on Computing, 41(6):1704–1721, 2012.
- [3] András A Benczúr and David R Karger. Randomized approximation schemes for cuts and flows in capacitated graphs. SIAM Journal on Computing, 44(2):290–319, 2015.
- [4] Marcin Mucha and Piotr Sankowski. Maximum matchings via gaussian elimination. In 45th Annual IEEE Symposium on Foundations of Computer Science, pages 248–255. IEEE, 2004.
- [5] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computational mathematics, 12(4):389–434, 2012.