
CS 761: Randomized Algorithms Fall 2019

Lecture 11 — November 22, 2019

Prof. Gautam Kamath By: Yossef Musleh, Ali Sabet
Edited by Vedat Levi Alev

Disclaimer: These notes have not been subject to the usual scrutiny reserved for formal publica-
tions.

Property Testing

A Motivating Example

Suppose Alice and Bob each have n-bit strings a = a1 . . . an and b = b1 . . . bn respectively, and they
want to test if a = b while minimizing the number of bits communicated. It turns out that this can
be done

• Deterministic: Θ(n) bits

• Randomized: Θ(log n) bits

• Property Testing: O(1/ε) bits

The property testing approach relaxes the problem by assuming that either a = b or they are at
least “ε-far” away i.e. ‖a− b‖1 ≥ εn. Under this assumption, consider the following algorithm:

- Alice picks O
(log 1/δ

ε

)
indices using a shared source of randomness, and sends her correspond-

ing bits to Bob.

- If ai = bi for all shared indices i, return a = b, otherwise return a 6= b

If a = b, the answer is always correct, but what happens when a and b are far apart? In this case
we have

Pr
[
return a = b | ‖a− b‖1 ≥ εn

]
≤
(

1− εn

n

)O(log(1/δ)/ε)

≤ (exp(−ε))O(log(1/δ)/ε) ≤ δ.

Theorem 1. There exists a O
(log 1/δ

ε

)
-bit communication protocol to test whether two n-bit strings

a, b satisfy either a = b or ‖a− b‖ ≥ εn with probability 1− δ.

1

Testing Sortedness

Given an array x of n (unique) values, test whether they’re sorted or if they are “ε-far,” i.e., we
must remove ≥ εn values to make the rest sorted. The array

[1, 2, 6, 5︸︷︷︸
remove one

, 7, 8]

can be made sorted by removing one element and hence is not ε-far.

We first investigate a few natural algorithms, and show why they are query-inefficient for this
problem.

Algorithm 1: Pick a random index i ∈ [n] and check if xi < xi+1.

Problem: If there are lots of contiguous sorted blocks, if the blocks themselves are not in sorted
order with respect to one another, we only return “not sorted” if we pick boundary elements. For
example:

3n

4
+ 1, . . . , n,

n

2
+ 1, . . . ,

3n

4
,
n

4
+ 1, . . . ,

n

2
, 1, . . . ,

n

2

Algorithm 2: Pick 2 random indices i < j and check if xi < xj .

Problem: If there are small unsorted blocks but the blocks are in relatively sorted order, we only
fail if we choose two elements from the same block. For example:

[4, 3, 2, 1], [8, 7, 6, 5], [12, 11, 10, 9], . . .

For the preceding two cases, we need Ω(n) queries.

Algorithm 3: Pick a random subsequence and test to see if the subsequence is sorted.

Problem: Requires Ω(
√
n) queries. Consider the case where we have

√
n subsequences in reverse

sorted order of length
√
n placed in relatively sorted order, as in the following example:

[4, 3, 2, 1], [8, 7, 6, 5], [12, 11, 10, 9], [16, 15, 14, 13]

We find a subsequence to be out of order only if we compare two entries from the same subsequence,
which on average happens after O(

√
n) queries.

Algorithm 4: Repeat O
(log(1/δ)

ε

)
times:

• Pick a random index i ∈ [n].

• Binary search for xi.

• If xi is not found via binary search, return not sorted.

2

Otherwise return sorted.

Analysis: Each binary search usesO(log n) queries, so the overall query complexity isO
(log(1/δ) logn

ε

)
.

If sorted, the algorithm always returns the correct answer. If the array is ε-far from sorted, we want
to show there are many non-searchable elements, which are elements where binary search does not
correctly return the location of the searched element.

Claim 2. If an array is ε-far from sorted, then there are at least εn non-searchable elements.

Proof. We prove this via contrapositive. Suppose there are less than εn non-searchable elements
and consider two searchable elements xi < xj . If xp is the lowest common pivot, then we must
have xi ≤ xp ≤ xj so the triple of elements are in sorted order. If there are more than (1 − ε)n
searchable elements, the previous argument implies that the sub-array of searchable elements is in
sorted order and so fewer than εn elements need to be removed.

So then we have

Pr
[
finding a searchable element

]
≤
(

1− εn

n

)O(log(1/δ)/ε)

≤
(

exp
(
− ε
))O(log(1/δ)/ε) ≤ δ.

Aside: Graphs and functions are two common types of objects to which property testing approaches
can be applied. There are a number properties commonly considered when testing graphs, including
whether a graph is bipartite, planar, or triangle-free. These can also be tested under various
assumptions, such as the graph being dense or having a degree bound. In the case of functions, we
trade sortedness for monotonicity.

Testing Distributions

Suppose we can sample from a distribution X1, . . . , Xm ∼ P ; we might want to test:

• Identity: Whether P = Q for some distribution Q, or ‖P − Q‖1 ≥ ε. Commonly, Q = Un,
the uniform distribution.

• Membership: Whether P is a member of a class of distributions M , or minQ∈M ‖P −Q‖1 ≥ ε.
For example, M may be the set of monotone distributions.

Uniformity Testing

Suppose either P = Un or ‖P −Un‖1 ≥ ε. How many samples can we expect to need to distinguish
the two case with probability 1−δ ? Intuitively, one might expect Ω(

√
n); for example, consider the

distribution that is uniform over a subset of size n/2 and zero elsewhere. We don’t expect to get
any information until we begin to see collisions in the sample set, which requires Ω(

√
n) samples.

More formally, the probability that any two samples are equal is

n∑
i=1

p2i = ‖P‖22.

3

If P = Un, then ‖P‖22 = 1
n . Moreover, if ‖P − Un‖1 ≥ ε by Cauchy-Schwarz we have:

ε ≤ ‖P − Un‖1 ≤
√
n‖P − Un‖2.

So then we get:

ε2

n
≤ ‖P − Un‖22 =

n∑
i=1

(
pi −

1

n

)2

=

n∑
i=1

p2i −
2

n

n∑
i=1

pi +
1

n
= ‖P‖22 −

1

n
.

So ‖P‖22 ≥ 1
n + ε2

n , and it suffices to obtain an (ε2, δ) approximation of ‖P‖22. To do this, consider
the following statistic:

Z =
1(
m
2

) ∑
1≤i<j≤m

σij

where

σij =

{
1, if Xi = Xj

0, otherwise.

Then:

E[Z] =
1(
m
2

)(m
2

)
E[σ12] = Pr[X1 = X2] = ‖P‖22

E[Z2] = E

[(
1(
m
2

) ∑
1≤i<j≤m

σij

)2]
=

1(
m
2

)2 ∑
1≤i<j≤m
1≤k<`≤m

E[σijσjk]

Consider the following cases:

Case 1 i = k, j = `:
E[σ2ij] = E[σij] = Pr[Xi = Xj] = ‖P‖2∑

i=k
j=`

E[σijσk`] =

(
m

2

)
‖P‖22

Case 2 3/4 of i, j, k, ` are unique:

∑
i=k

or j=k
or i=`
or k=`

E[σijσk`] =

(
m

3

)
4‖P‖33 ≤ 4

(
m

3

)
‖P‖32

4

Case 3 All unique - this implies σij , σk` are independent:

∑
i,j,k,`
distinct

E[σijσk`] =
∑
i,j,k,`
distinct

E[σij]
2 =

(
m

2

)(
m− 2

2

)
‖P‖42

Combining the cases:

V ar[Z] ≤ 1(
m
2

)2((m2
)
‖P‖22 +

(
m

3

)
‖P‖32 +

(
m

2

)(
m− 2

2

)
‖P‖42 −

(
m

2

)2

‖P‖42︸ ︷︷ ︸
<0

)

≤ 1(
m
2

)2((m2
)
‖P‖22 +

(
m

3

)
‖P‖32

)
.

By Chebyshev:

Pr
[
|Z − ‖P‖22 ≥ ε2‖P‖22

]
≤ V ar[Z]

(ε4‖P‖42)

≤ 1

ε4‖P‖42

(
‖P‖22
m2

+
‖P‖32
m

)
≤ n

ε4m2
+
n1/2

ε4m
.

So we need m ≥ Ω(
√
n/ε4). This implies the following algorithm:

• Take Ω(
√
n/ε4) samples from a distribution P

• Compute Z

• If Z ≤ 1
n + ε2

2n output uniform otherwise not uniform

The analysis is lossy - the same test actually achieves sample complexity O
(√n
ε2

)
[4]. Furthermore,

requiring equality is strong; instead we may wish to distinguish between ‖P−Un‖ ≤ ε
2 or ‖P−Un‖ ≥

ε. But this turns out to have sample complexity Ω
(

n
logn

)
[5]! One can note that the problem of

distinguishing ‖P −Un‖1 ≤ O
(

ε2

100
√
n

)
versus ‖P −Un‖ ≥ ε can be done with only Ω(

√
n
ε2

) samples.

This is because Un and any P such that ‖P −Un‖1 ≤ O(τ) can be coupled to generate an identical
set of n samples with high constant probability, for any n ≤ O(1/τ).

We instead relax the tolerance of the tester into the χ2 distance, and show that this testing procedure
can be done with the same sample complexity. But is this relaxed tolerance into Chi-squared still
useful? Yes, and the method for monotonicity testing is the key application [1].

Definition 3. Let P , Q be two distributions. Define

χ2(P,Q) =
∑
i∈S

(pi − qi)2

qi
.

5

Observe that χ2(P,Q) can be large even when ‖P−Q‖1 ≈ 0, such as when P = Ber(1), Q = Ber(1−
γ). As γ → 0, ‖P −Q‖1 → 0, but χ2(P,Q)→∞. However, we always have ‖P −Q‖1 ≤ χ2(P,Q).

Learning the Test for Monotonicity

To motivate the need for χ2-distance, we first give a naive algorithm for testing whether a distri-
bution is monotone, which will have a high sample complexity. We then discuss the modifications
needed to achieve the optimal sample complexity.

1. Learn P , assuming P is monotone.

(a) If P is monotone, get P̂ such that ‖P − P̂‖1 ≤ ε
100

(b) If ‖P −Mn‖1 ≥ ε, get P̂ such that ‖P − P̂‖1 ≥ ε

2. Test whether

(a) If ‖P − P̂‖1 ≤ ε
100 , then return monotone.

(b) If ‖P − P̂‖1 ≥ ε, then not monotone.

The first step can be done with O(logn
ε3

) samples using domain compression [3], whereas the second
takes Ω(n

logn) samples, which is not great.

So instead, we switch from `1 learning to χ2 learning by replacing the condition ‖P − P̂‖1 ≤ ε
100

with χ2(P, P̂) ≤ ε2

100 . This turns out to have a sample complexity of O(logn
ε4

) [1, 2]. The increase
in sample complexity is modest: a multiplicative O(1/ε), compared with before.

What about the second step? Now we must solve a more difficult testing problem than before, which
tests whether a distribution is close in χ2-distance or far in `1-distance from a known distribution.
Fortunately, this can still be solved with O(

√
n/ε2) samples.

Theorem 4. For a known distribution Q, there exists an algorithm with sample complexity O(
√
n
ε2

)
which distinguishes between the cases χ2(P,Q) < ε2/10 versus ‖P − Q‖1 > ε with probability at
least 5/6.

The statistic is the following, which is similar to Pearson’s classical Chi-squared statistic.

Z(Q) =
∑
i∈[n]

(Ni −mqi)2 −Ni

mqi

where

- Ni = number of samples equal to i

- m = total number of samples

- qi = Probability of i under Q

Putting these two steps together, the overall sample complexity is O(
√
n
ε2

+ logn
ε4

).

6

References

[1] Jayadev Acharya, Constantinos Daskalakis, and Gautam Kamath. Optimal testing for proper-
ties of distributions, 2015.

[2] Jayadev Acharya, Ashkan Jafarpour, Alon Orlitsky, and Ananda Theertha Suresh. Efficient
compression of monotone and m-modal distributions. In 2014 IEEE International Symposium
on Information Theory, pages 1867–1871. IEEE, 2014.

[3] Lucien Birgé et al. Estimating a density under order restrictions: Nonasymptotic minimax risk.
The Annals of Statistics, 15(3):995–1012, 1987.

[4] Ilias Diakonikolas, Themis Gouleakis, John Peebles, and Eric Price. Collision-based testers are
optimal for uniformity and closeness. arXiv preprint arXiv:1611.03579, 2016.

[5] Gregory Valiant and Paul Valiant. Estimating the unseen: an n/log (n)-sample estimator for
entropy and support size, shown optimal via new clts. In Proceedings of the forty-third annual
ACM symposium on Theory of computing, pages 685–694. ACM, 2011.

7

