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1 Data Privacy

1.1 (Unsuccessful) Ad Hoc Methods

1. Netflix Challenge (2006–2009)

Researchers were challenged to use machine learning techniques on Netflix’s dataset to rec-
ommend new movies that users would enjoy.

Netflix tried to anonymize their data by only storing:

• Anonymised user id

• What movies they rated

• How high they rated it

• When they rated it

Paper: Narayanan-Shmatikov (2006) [6]: The authors found that they were able to identify
individuals in the dataset. Their main idea was a cross-reference attack, where they looked at
reviews on IMDB and cross-referenced the dates with when they watched the movie on Netflix.
Since some IMDB user profiles had names and other identifying information, they could link
people with watching potentially politically or socially sensitive movies. This stopped the
2nd Netflix Challenge from happening because of privacy concerns.

2. GWAS (Genome Wide Association Study)
In these studies, researchers released supposedly anonymized genome data, with each data
point having an individual’s genetic markers and what diseases they got, in the hope of find-
ing genetically-based diseases.

In 2008, Homer et al found they were able to reidentify individuals, or tell if a specific
person participated in a study. They were able to do this in a synthetic environment using
χ2 statistics [5]. Based on this finding, the American National Institutes of Health (NIH)
stopped releasing certain classes of statistics to the public.

3. Massachusetts Group Insurance Commission (1997). The Massachusetts GIC had a database
where each row contained

name, SSN, zip, date of birth, sex, diagnosis, procedure
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This was released to the public, but without the name and SSN fields, to hopefully anonymize
the data.

To try to deanonymize the data, Latanya Sweeney paid $20 to get a list of

name, party affiliation, zip, date of birth, sex

for people in Cambridge, MA from a voter database. She matched this information to the
above released data.

In order to match the voter information to the MGIC data, she found that, for example:
Narrowing to same date of birth → 6 people
Adding sex:male → 3 people
Adding same zip → 1 person

Using this, Sweeney found a governor’s medical records and mailed them to him to prove the
danger of the attack. In a further study, she found that someone’s ZIP code, date of birth,
and sex was enough to uniquely identify 87% of people in the US. [9]

1.2 k-anonymity (Samarati-Sweeney [8])

Definition 1. k-anonymity ⇐⇒ each row in a database is identical to ≥ (k − 1) other rows.

The following is an example of making a database 2-anonymous (with respect to the “pseudo-
identifiers,” which are the columns besides Disease) using suppression (generalizing data in rows):

Original database:

First Last Age Race Disease

Harry Stone 34 Af.Am flu
John Reyser 36 Cauc. mumps
Beatrice Stone 47 Af.Am. mumps
John Ramos 22 Hisp. mumps

Suppressed database:

Age Race Disease

30-50 Af.Am flu
20-40 * mumps
30-50 Af.Am. mumps
20-40 * mumps

One major issue with this approach is that it takes polynomial time using suppression techniques
to make a database k-anonymous for k = 2, but it is NP-hard for k ≥ 3. Using only *s to suppress
data, there exists O(log k)-approximation algorithms in poly-time.

Another issue is that this approach still suffers from similar attacks as before. Say we know John
Ramos, 22 is in the above database, we can identify that he has mumps even in the suppressed
version.
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1.3 Dinur-Nissim attack [2]

Consider the following setting:

A trusted curator holds a database X ∈ Un where the universe U = {0, 1}d. Intuitively, n is the
number of individuals, and the database stores d bits of data for each individual.

Queries q1, . . . , qm, are questions about the dataset asked to the (trusted) curator. We want any
query result the curator gives to be sufficiently private. We start by focusing on counting queries,
or queries that ask how many people in the database satisfy some property.

Counting Queries:

q : U → {0, 1}

q(X) =
1

n

n∑
i=1

q(xi)

We note that these can be too specific, as any answer that returns exactly
n− 1

n
means only one

person does not satisfy a specific property. We then use the idea of a mechanism (or algorithm) M
that transforms the answers to queries into some approximation according to the following diagram:

For the sake of making examples easier, we focus on d = 1 (one bit stored per person).

One example of this kind of query is a correlation query:

qi(x) =
1

n

n∑
j=1

qijXj qi ∈ {0, 1}n, qij ∈ {0, 1}

Definition 2. Normalized Hamming distance between X and X ′ is dH(X,X ′) = 1
n |{i : xi 6= x′i}|.

We can note that some kinds of mechanisms are not sufficiently private, and in fact we can compute
an entire database that is relatively close to the original database, something we call blatantly non-
private.
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Theorem 3 (Dinur-Nissim [2]). Let α > 0. Suppose that for all q ∈ {0, 1}n, the algorithm outputs
yq ∈ R with |yq − q(x)| ≤ α. Then we can compute a database X ′ ∈ {0, 1}n such that dH(X,X ′) ≤
4α.

Proof. Output any X ′ which is consistent (i.e. |yq− q(X ′)| ≤ α) with all queries, after asking every
query q ∈ {0, 1}n. At least one such X ′ exists, since X is consistent with every query. Consider
the two queries q1 = X and q0 = 1−X = X (queries that should count everything in the database
respectively nothing). We compute the Normalized Hamming distance:

dH(X,X ′) =
1

n
|{i : xi = 1, x′i = 0}|+ 1

n
|{i : xi = 0, x′i = 1}|

= (q1(X)− q1(X ′)) + (q0(X ′)− q0(X))

≤ (yq1 + α)− (yq1 − α) + (yq0 + α)− (yq0 − α)

= 4α

We note that there are some issues with this approach. In the above proof, we use 2n queries,
which is both computationally inefficient and easy to detect by the trusted curator. However, we
can show that only O(n) queries are needed for a different approximation.

Lemma 4 (Paley-Zygmund Inequality1). Suppose X is a non-negative random variable. Then

Pr[X ≥ λE[X]] ≥ (1− λ)2 E[X]2

E[X2]
.

Proof.

E[X] = E
[
X · 1{x≤λE[X]}

]
+ E

[
X · 1{x≥λE[X]}

]
≤ λE[X] +

√
E[X2] · E

[
1{x≥λE[X]}

]
(by Cauchy-Schwartz)

= λE[X] +
√

E[X2] · Pr[X ≥ λE[X]]

=⇒ Pr[X ≥ λE[X]] ≥ (1− λ)2 E[X]2

E[X2]
(by rearranging)

Theorem 5. There exists a set of m = O(n) queries q1, . . . , qm such that, given y1, . . . , ym with
|yi − qi(X)| ≤ α√

n
for all i, we can compute a database X ′ such that dH(X,X ′) = O(α2). The

algorithm works with probability ≥ 1
2 .

Proof. Choose queries q1, . . . qm uniformly at random in {0, 1}n. Similar to before, output any X ′

1Compare to Markov’s Inequality which shows Pr[X ≥ λE[X]] ≤ 1
λ
.
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such that |yi − qi(X ′)| ≤ α√
n

. Consider any Y with dH(X,Y ) =
∑n

j=1(xj − yj)2 ≥ cα2. We have:

qi(X)− qi(Y ) =
1

n

n∑
j=1

qij(xj − yj)

Var[qi(X)− qi(Y )] = Var

 1

n

n∑
j=1

qij(xj − yj)


=

1

4n2

n∑
j=1

(xj − yj)2 (since qij
i.i.d.∼ Bernoulli(1

2))

≥ cα2

4n2
(by choice of Y )

With substantial computations (omitted), Paley-Zygmund allows one to derive that

Pr
[
∀i, |qi(X)− qi(Y )| ≤ 2α√

n

]
≤ 2−2n−1

=⇒ Pr
[
∃X,Y, ∀i, |qi(X)− qi(Y )| ≤ 2α√

n

]
≤ 1

2
(by union bound)

Using the triangle inequality gives:

|yi − qi(X)| ≤ α√
n

and |yi − qi(Y )| ≤ α√
n

=⇒ |qi(X)− qi(Y )| ≤ 2α√
n

=⇒ Pr
[
∃X,Y both consistent with all queries : dH(X,Y ) ≥ cα2

]
≤ 1

2

Hence the algorithm will with probability≥ 1
2 returnX ′ with the desired guarantee that dH(X,X ′) =

O(α2).

We note that there was a recent use of this form of attack in practice by Cohen and Nissim [1].

1.4 Differential Privacy

1.4.1 Randomized Response (Warner 1965 [10])

Setting: We have n people, each with a sensitive bit bi ∈ {0, 1}. We want to calculate Z = 1
n

∑n
i=1 bi

while still keeping the information private.

Take 1

Ask everyone to tell bi truthfully, Z = 1
n

∑n
i=1 bi. This is perfectly accurate, but not private at all.
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Take 2

Everyone reports Xi =

{
bi with probability 1

2

1− bi with probability 1
2

. Compute Z ′ = 1
n

∑n
i=1Xi. This is perfectly

private, but not accurate at all or even useful, as it is effectively just generating random bits for
each person.

Take 3 (middle ground)

Everyone reports Xi =

{
bi with probability 1+ε

2

1− bi with probability 1−ε
2

.

This idea is due to Warner [10]. We can note that ε = 1 corresponds to Take 1, and ε = 0
corresponds to Take 2. A good middle ground is something like ε = 1

2 , giving us a 3/4 chance
of telling the truth and 1/4 change of lying. As a means of measuring privacy, we calculate the
following:

Pr[bi = 1 | Xi = 1]

Pr[bi = 1 | Xi = 0]
=

(1+ε
2 )

(1−ε
2 )
≈ 1 + 2ε

Note that when ε is small, this means it is very private (roughly the same chance of knowing
someone’s true bit and it being changed). We can then calculate the following for accuracy:

E[Xi] = bi
1+ε

2 + (1− bi)1−ε
2 = εbi + 1−ε

2

Z ′ =
1

n

n∑
i=1

1

ε
(Xi − 1−ε

2 )

E
[
Z ′
]

=
1

n

n∑
i=1

bi

Var
[
Z ′
]

=
1

n2ε2

n∑
i=1

Var[Xi] ≤ O( 1
nε2

)

So by Chebyshev’s inequality we get

Error |Z − Z ′| ≈ O(SD(Z ′)) = O( 1
ε
√
n

)

This gives us accuracy α when n ≥ Ω( 1
α2ε

).

1.4.2 Central Differential Privacy (Dwork-McSherry-Nissim-Smith TCC 2006 [3])

Definition 6. A randomized algorithm M is (ε, δ)-Differentially Private (DP) if, for all S ⊆
Range(M), and all x, y that differ in ≤ 1 entry, Pr[M(x) ∈ S] ≤ eε Pr[M(y) ∈ S] + δ.

This guarantees good privacy if ε is a small constant (say ε = 1 is reasonable, ε = 0.1 is great), and
δ “cryptographically small”. When δ = 0, we call it pure DP, and when δ > 0 approximate DP.
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Note that here x and y can be thought of as neighboring databases, or databases that only differ
in one entry. Putting this into the context of previous attacks, it means that even if someone has
sidechannel information about you, you can be safe adding your information to the database, as it
will not change the answer to queries much. Note also that this kind of differential privacy requires
a trusted curator. This makes it central differential privacy, as opposed to local differential privacy,
which does not need a trusted participant [4] [7] [10].

1.4.3 Laplace Mechanism

Consider some random variable Y which is sampled from the Laplace distribution Lap(b). Then

Y has probability density function PY (y) = 1
2b exp

(
1− |y|b

)
. We also note that Var[Y ] = 2b2, and

SD(Y ) =
√

2 · b.

Definition 7. Given f : X → R, the sensitivity ∆ is defined as

∆ = max
x,y∈X
x,y are

“neighbors”

|f(x)− f(y)|

Note that in the above definition, the term “neighbors” is intentionally vague, as what we want
differs substantially from setting to setting.

Theorem 8 (Laplace Mechanism). f(x) + Lap(∆
ε ) is ε-Differentially Private, where ∆ is the

sensitivity of f .

Proof. Suppose f : X → R, and x, y ∈ X are neighbors (i.e. they differ in at most one entry).
Define Px to be the probability density function of f(x) + Lap(∆

ε ) and Py similarly. Now evaluate
at any point z ∈ R:

Px(z)

Py(z)
=

exp
(
− ε|f(x)−z|

∆

)
exp
(
− ε|f(y)−z|

∆

)
= exp

( ε
∆

(|f(y)− z| − |f(x)− z|)
)

≤ exp
( ε

∆
|f(y)− f(x)|

)
≤ exp(ε)

This shows that the mechanism M(x) = f(x)+Lap(∆
x ) is ε-DP. We also note that this is a pure-DP

algorithm, since δ = 0.

1.4.4 Average of bits with Laplace Mechanism

We now revisit the average of bits problem, but use the Laplace Mechanism to construct a centrally
differentially private algorithm.
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Consider f(x) = 1
n

∑n
i=1 bi, and that the sensitivity ∆ ≤ 1

n . Then

Z ′′ =
1

n

n∑
i=1

bi + Lap

(
1

nε

)
E
[
Z ′′
]

=
1

n

n∑
i=1

bi

Var
[
Z ′′
]

=
2

ε2n2
SD[Z ′′] =

√
2

εn

This means error ≈ O( 1
εn) and accuracy α requires n ≥ Ω( 1

εα). This is quadratically better than
the randomized response algorithm, but requires a trusted curator.

Nice properties of Differential Privacy

• Post processing.
If M is (ε, δ)-DP, and f a function, then f ◦M is (ε, δ)-DP too.

• Group privacy.
If M is (ε, δ)-DP, then for all x, x′ which differ in at most k entries, Pr[M(x) ∈ S] ≤
ekε Pr[M(x′) ∈ S] + kekεδ. This can be thought of as the generalization of the theorem
above, where we are interested in the difference when multiple people change their entry in a
database, do not include it in a database, etc.

• Basic composition.
If M(x) = (M1(x), . . . ,Mk(x)) where each Mi is(ε, δ)-DP, then M is (kε, kδ)-DP.

• Advanced composition.
In the same setting as above, for all δ′ > 0, M is (

√
k log(1/δ′) · ε, kδ + δ′)-DP.
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