
CS 761: Randomized Algorithms Fall 2019

Lecture 2 — September 13, 2019

Prof. Gautam Kamath By: Graeme Stroud, Kevin Wang, Kevin Wu
Edited by Vedat Levi Alev

Disclaimer: These notes have not been subject to the usual scrutiny reserved for formal publica-
tions.

Recall from last lecture:

• (Markov’s Inequality) For a non-negative random variable (R.V.) X > 0, we have that

Pr(X > a) ≤ E[X]
a .

• (Coupon collector) Let Xi ∼ Uniform([n]). How many trials T until all items of [n] are seen?
Using direct methods, we proved the bound Pr[T ≥ βn lnn] ≤ n−(β−1). We also showed that
E[T] = nHn ≈ n lnn, which implies, by Markov’s inequality, the bound Pr[T ≥ βn lnn] ≤ 1

β .

• The variance of a random variable X is Var[X] := E[(X − E[X])2] = E[X2]− E[X]2.

Remark 1. For a random variable X, we will denote E[X] = µX and Var[X] = σ2X . We will drop
the subscripts when the context is clear.

1 Chebyshev’s Inequality

In the last lecture, we proved Markov’s inequality, which shows that the probability that a non-
negative random variable is less than a constant is bounded above by its expected value. Let’s look
at proving Chebyshev’s inequality, which shows that a distribution with bounded variance will be
concentrated around its mean.

Theorem 2 (Chebyshev’s Inequality). Let X be a random variable with Var[X] <∞. Then

Pr(|X − µ| ≥ k) ≤ Var[X]

k2
.

Equivalently, denoting σ =
√

Var[X]

Pr(|X − µ| ≥ kσ) ≤ 1

k2
.

Proof. We look at the non-negative random variable Y = (X−µ)2. Then E[Y] = E[(X−µ)2] = σ2.

By Markov’s inequality, we have Pr
(
Y ≥ k2E[Y]

)
≤ E[Y]

k2E[Y]
= 1

k2
. Hence

Pr (|X − µ| ≥ kσ) = Pr
(
(X − µ)2 ≥ k2σ2

)
= Pr

(
Y ≥ k2E[Y]

)
≤ 1

k2
.

1

Example 1 (Application of Chebyshev’s Inequality to Coupon Collector).

Recall that T =
∑n

i=1 ti where ti is the time between the (i − 1)-th and i-th unique coupon. Recall
that each ti are distributed as a geometric random variable: ti ∼ Geometric(n−i−1n).

First we will show the variance of X ∼ Geometric(p) is Var[X] = (1− p)/p2 ≤ 1
p2

.

Proof. Let q = 1− p. We have Var[X] = E[X2]− E[X]2 =
∞∑
i=1

i2qi−1p− (1p)2.

We will evaluate
∞∑
i=1

i2qi−1p by differentiation.

∞∑
i=1

i2qi−1p = p
d

dq

∞∑
i=1

iqi

= p
d

dq
q
d

dq

∞∑
i=1

qi

= p
d

dq
q
d

dq

q

1− q

= p
d

dq

q

(1− q)2

= p
1 + q

(1− q)3

=
2− p
p2

Thus Var[X] = 2−p
p2
− 1

p2
= 1−p

p2
.

By this claim we have Var[ti] ≤ n2

(n−i+1)2
. Since the ti are independent,

Var[T] = Var

[∑
i

ti

]
=︸︷︷︸
⊥

∑
i

Var[ti] = n2
∑
i

1

i2
≤ n2π2/6.

By Chebyshev’s inequality,

Pr[|T − E[T]| ≥ (β − 1)n lnn] ≤ n2π2/6

β2n2 ln2 n
= O

(
1

β2 ln2 n

)
.

Since E[T] = nHn ≈ n lnn, this shows

Pr(T ≥ βn lnn) ≤ O
(

1

β2 ln2 n

)
.

Example 2 (Mean Estimation). Consider some distribution D with finite variance. We would like
to estimate the mean of D using samples from D. We can use Chebyshev’s inequality to show that
the arithmetic mean of the samples is close to the distribution’s mean with high probability.

2

Let X1, . . . , Xn ∼ D be independent samples and assume that Var[D] ≤ σ2. Our estimate µ̂ will be
such that |µ̂− µ| is small with high probability. Set µ̂ = 1

n

∑
iXi. Then

E[µ̂] = E

[
1

n

∑
i

Xi

]
=

1

n

∑
i

E[Xi] = µ.

Next, it is an easy exercise to show that Var[kX] = k2Var[X] for a random variable X and k ∈ R.

Using the exercise,

Var[µ̂] = Var

[
1

n

∑
i

Xi

]
=

1

n2

∑
i

Var[Xi] =
σ2

n
.

By Chebyshev’s inequality,

Pr

(
|µ̂− µ| ≥ 10σ√

n

)
≤ σ2/n

(10σ/
√
n)2

=
1

100
.

If we set n = O(σ
2

ε2
), then Pr(|µ̂− µ| ≥ ε) ≤ 1

100 .

2 Chernoff’s Method

Chebyshev’s inequality uses the second moment (E[X2]). We could have proved something for the

higher moments by observing Pr[|X − µ| ≥ a] = Pr[|X − µ|k ≥ ak] ≤ E[|X−µ|k]
ak

. This suggests that
we may be able to get better bounds by considering more moments of the variable. The Moment
Generating function (MGF) of a random variable will help determine these moments. The MGF
will also gives us another way to measure how concentrated a random variable is near it’s mean,
by using Chernoff’s method.

2.1 Moment Generating Functions (MGF)

Definition 3. The MGF of a random variable X is MX(t) = E[etX]. Expanding out the Taylor
series for ex, we have

E[etX] = E[
∑
i≥0

ti

i!
Xi] =

∑
i≥0

ti

i!
E[Xi]..

Exercise 1. Show that

• M (k)
X (0) = E[Xk], where f (k) is the kth derivative of f .

• If X = X1 +X2, then MX(t) = MX1(t) ·MX2(t).

2.2 Chernoff bound for Bernoulli Variables

The general form of the Chernoff method for a random variable X is

Pr(X ≥ a) = Pr(etX ≥ eta) ≤ E[etX]

eta
=
MX(t)

eta
∀t ≥ 0

3

We will consider a simple case of our random variable being a sum of independent and identically
distributed Bernoulli random variables. Let Xi ∼ Bernoulli(pi) be independent, and X =

∑
iXi.

Then µX =
∑

i µi =
∑

i pi.

The MGF of X can be computed by:

MX(t) = E[etX]

=
∏
i

E[etXi]

=
∏
i

(pie
t·1 + (1− pi)et·0)

=
∏
i

(1 + pi(e
t − 1))

=
∏
i

epi(e
t−1) Since 1 + x ≤ ex

= e
∑
i pi(e

t−1)

= eµ(e
t−1)

If we take a = (1 + δ)µ and t = ln(1 + δ), then we have, using the general form of the Chernoff
method

Pr(X ≥ (1 + δ)µ) ≤ eµδ

(1 + δ)(1+δ)µ

Exercise 2. Show that for 0 ≤ δ ≤ 1, eδ

(1+δ)(1+δ)
≤ e−δ2/3.

Using this exercise, we can deduce that Pr(X ≥ (1 + δ)µ) ≤ e−µδ
2/3 for 0 ≤ δ ≤ 1. Similarly, we

may show that Pr(X ≥ (1− δ)µ) ≤ e−µδ2/2.

Theorem 4 (A common Chernoff bound). Pr(|X − µ| ≥ δµ) ≤ 2e−µδ
2/3, for 0 ≤ δ ≤ 1

Remark 5. This can be slightly generalized to continuous random variables Xi supported on [0, 1]
with E[Xi] = pi ∈ [0, 1].

(0,1)

E[etX]

(1,et)

This graph illustrates that etx ≤ (et − 1)x+ 1 when x ∈ [0, 1]

4

Thus E[etX] ≤ E[(et − 1)X + 1] = (et − 1)E[X] + 1. Therefore, the entire derivation from above
works for this random variable.

Example 3 (Comparison of Chernoff’s bound with Chebyshev’s Inequality.).
Let X ∼ Bin(n, 1/2) =

∑
iBernoulli(1/2). We have Var[X] =

∑
Var[Bernoulli(1/2)] = n · 14 = n

4
and E[X] =

∑
E[Bernoulli(1/2)] = n

2 . By Chebyshev’s inequality

Pr(|X − n/2| ≥ k
√
n) ≤ n/4

(k
√
n)2

=
1

4k2
.

By Chernoff (Theorem 4), we have

Pr

(
|X − n/2| ≥ 2k√

n

n

2

)
≤ 2 exp

(
−4k2

n
· n/2 · 1/3

)
= 2 exp(−2k2/3).

To obtain a bound of O (δ), we need to set k =
√

1/δ for Chebyshev’s, while we only need k =√
ln(1/δ) for Chernoff.

2.3 Bounds for Coupon Collector

In lecture 1, we gave two bounds for the Coupon Collector problem using a direct bound and
Markov’s inequality. Chebyshev’s inequality (Example 1) and Chernoff’s method can be used to
get a bound too. The quantity we are bounding for coupon collector is Pr(T ≥ βn lnn).

• Direct bound gives ≤ n−(β−1).

• Markov’s inequality gives ≤ O(1
β).

• Chebyshev’s inequality gives O(1
β2 ln2 n

).

• Chernoff’s method [1] gives ≤ n−(β−1−lnβ).

3 Graph Algorithms

We will explore algorithms for two well known graph problems: the Min-Cut problem and the
Minimum Spanning Tree problem.

3.1 Karger’s Min-Cut Algorithm

Given a graph, consider splitting the vertices into two non-empty disjoint sets. Some edges may
have its endpoints be in opposite sets. If we “cut” all of these edges, we end up separating the
vertices of the two sets from each other. The main goal will be to find a partitioning that minimizes
the number of cut edges.

Definition 6. Let G = (V,E) be a graph. We will denote |V | = n and |E| = m. A cut of
G is a partition (S, T = V \ S) of V . A cut (S, T) is a min-cut if the number of cut edges
{(u, v) ∈ E;u ∈ S, v ∈ T} is minimum over all cuts of G. For two vertices s, t ∈ V , an st-cut is a
cut (S, T) such that s ∈ S and t ∈ T .

5

Remark 7. We can compute the minimum cut for a graph (V,E), by computing the minimum
st-cut for all distinct pairs of vertices s, t ∈ V , and taking the st-cut that has the least number of
edges.

As a baseline, we can compare with the complexity of algorithms based on max flow.

Remark 8. The value of the min st-cut is equal to the maximum amount of flow that can pass from
source s to sink t in G, where each edge has a capacity of 1. If a st-flow that is maximum has been
computed, a minimum st-cut can be computed from it in linear time. The best known algorithm for
computing the max st-flow is by Orlin [2] which has run time of O(mn). Applying this naively over
all pair of vertices st gives a run time of O(mn3). This can be optimized so that s is fixed and we
iterate over all t, giving a run time of O(mn2).

Karger’s Min-Cut algorithm provides a much more efficient algorithm than using an st-flow algo-
rithm. The algorithm has a low probability of success, but can be called repeatedly in order to boost
the probability of success. The pseudocode is presented in Algorithm 1. The main idea: repeatedly
pick a random edge from the graph and “contract” the edge, by merging the two endpoints. The
subsequent graph may be a multi-edge graph, and if we ever end up with a self loop, we remove it.
Once only two vertices are left, we return the cut given by the edges that remain.

Input: G = (V,E), undirected
Output: a partition (S, T) of V such that the number of cut edges is minimized
while |V | > 2 do

choose e ∈ E uniformly
contract e

return the remaining cut
Algorithm 1: Karger’s Min-Cut Algorithm

Example 4. An example execution of the algorithm:

1 2

3 4

5×

1

3

2,4 5
×

1 2,3,4 5× 1,2,3,4 5

Observation 9. At any intermediate step, a cut in the intermediate graph is a cut in the original
graph.

Lemma 10. Karger’s Min Cut algorithm outputs a min-cut with probability ≥ 2
n(n−1) .

Proof. Let G1 := G,G2, . . . , Gn−1 be the graphs we obtain as we run Karger’s algorithm. At step
i, we contract an edge in Gi to produce the graph Gi+1. Fix a min-cut F of size k. We will show
that

Pr(some e ∈ F is contracted at step i) =
edges in F

edges in Gi
≤ 2

n− i+ 1

We condition this probability on never contracting an edge in F so far. Observe that for every i
and vertex v ∈ Gi, deg v ≥ k. Otherwise, a cut containing only v will have smaller size than F .

6

Furthermore, since we contract one edge at each step, the size of Gi is n− i+ 1. Thus the number
of edges in Gi is at least (n− i+ 1) · k/2.
Thus Pr(some e ∈ F is contracted at step i) ≤ 2

n−i+1 and Pr(contract an edge not in F) ≥ n−i−1
n−i+1 .

Taking this over all contractions we have

Pr(never contract an edge in F) =

n−2∏
i=1

Pr(contract an edge not in F at step i) (1)

≥
n−2∏
i=1

n− i− 1

n− i+ 1
=

n−2∏
i=1

i

n∏
i=3

1

i
(2)

=
2

n(n− 1)
(3)

Theorem 11. If we run the algorithm O(n2) times and take the minimum cut produced, we will
find the global min-cut with probability > 99%.

Proof. We upper bound the probability that, after T independent runs of the algorithm, none of
them produce a min-cut. Pr(T runs fail) ≤ (1− 2

n(n−1))
T ≤ exp(−2T/(n(n−1))). Taking T = cn2,

the failure probability is ≤ e−2c.

Remark 12. Each run of Karger’s algorithm can be done in O(m) time, so the total running time
is O(mn2). This can be improved to Õ(mn) [3]. The key idea is that in the first few steps, the
algorithm is unlikely to fail, so these steps can be reused.

Interestingly, while this statement is algorithmic, it also implies structural properties about the
number of min-cuts in a graph.

Corollary 13. For any G, there are O(n2) min cuts of G.

Proof. For any min cut F , it is output with probability ≥ 2
n(n−1) . These events are disjoint. Thus

1 ≥
∑

min cut F

Pr(F survives) ≥ # min cuts · Ω(n2).

3.2 Minimum Spanning Tree

A minimum spanning tree (MST) of a graph with edge weights asks for a subgraph with the
same vertices and whose edges form a tree of minimum total weight. The Karger-Klein-Tarjan
MST algorithm is an efficient randomized algorithm for this problem. Unlike Karger’s Min-Cut
algorithm, this MST algorithm always returns the correct answer, but the runtime is random. In
expectation, the runtime is linear in the number of edges of the graph.

7

Definition 14. Let G be an undirected graph. Suppose that we have weights wij for every edge
(i, j) ∈ E and assume that these weights are unique. A spanning forest is a subset S ⊆ E such
that G′ = (V, S) contains no cycles and S is the maximal set with this property. Equivalently, if
u, v is connected in G, it is connected in G′. If |S| = n − 1, then we say that G′ is a spanning
tree. A minimum spanning (forest,tree) (MSF, MST) is a spanning (forest,tree) of minimum weight
(
∑

e∈S we).

Fact 15. The best deterministic algorithm currently is O(mα(m,n)) where α is the inverse Ack-
ermann function. [4]

Recall Kruskal’s algorithm for MST: First sort edges by increasing weight. Initialize a set that col-
lects the edges of the minimum spanning tree. At the beginning, this set is empty. Going through
the edges in sorted order, check if adding it to the currently chosen edges would create a cycle with
the edges added so far, and add it if it does not. Return the tree gotten after adding n− 1 edges.

Another minimum spanning tree algorithm is Boruvka’s Algorithm: for every node, pick an incident
edge of minimum weight, and add it to the MST edge set. Contract all these edges in the graph.
Then recursively repeat on the new graph, accumulating the edges until we get a one node graph.
This means we did n− 1 contractions, and each edge we contracted are the edges of the minimum
spanning tree.

Example 5 (Execution of Boruvka’s algorithm).

1 2

3

4

4

3

The red edges get contracted, and will be the edges of the minimum spanning tree.

Remark 16. We contract at least |V |/2 edges at each step of Boruvka’s algorithm. Therefore, it
takes O(log n) steps in order to contract n− 1 edges. Each step takes O(m) time, so the total run
time is O(m log n).

Boruvka’s algorithm is as efficient asymptotically as Kruskal’s. We will see how Boruvka’s algorithm
is used in the Karger-Klein-Tarjan algorithm. The key observation that motivates this algorithm is
that there are certain edges of G that are not part of any MST of G. So we can remove such edges
from the graph, and this subgraph will have the same MSF’s as G. We will be able to compute a
subset of these edges efficiently.

Definition 17. Given a forest F , an edge e = (u, v) is F -heavy if

• u, v is connected in F

8

• wuv ≥ the weight all of edges on the u, v path in F .

If e is not F -heavy, we say that it is F -light.

Exercise 3. Suppose that e = (u, v) is F -heavy for some F . Equivalently, suppose that e is the
heaviest edge of a cycle C. Then no MSF (and therefore no MST) of G will contain (u, v).

Hint/sketch: Suppose that e is in a MST. Replace it by the other edges in the cycle. Resolve any
cycles this creates and argue that the resulting tree has smaller weight.

Theorem 18. There is an algorithm taking G and a forest F , and computes all F -heavy edges in
O(m+ n) time. [5]

The idea behind the algorithm is that we will sample a small subgraph of G, and compute the MSF
F of this subgraph. Then, remove all F -heavy edges and hope that the resulting graph is sparse,
and directly compute the MST of this.

Algorithm: Naive MST

Generate G(p) by sampling each edge with probability p
Find MSF of G(p), call it Fp
Remove all Fp-heavy edges from G to form G′.
Find MST of G′.

Lemma 19. E[# of Fp − light edges in G] ≤ n/p.

Proof. We will follow Kruskal algorithm with a twist. We will sample the edges in order of the
weight. If it is selected, add it to F if it does not form a cycle among the selected edges so
far. Note that since each sample is independent, this is equivalent to constructing G(p) normally.
Furthermore, since the order of the edges is the same as in Kruskal’s algorithm, the forest we obtain
is a MSF of G(p). Let Ei be the state of F after we sample the i-th edge, ei = (u, v). Then ei
is F -light ⇔ ei connects two connected components in Ei−1. This is because ei is F -light when
u, v is not connected in F or some edge of F is heavier on the u, v path. In the first case, the
two components were never connected. In the second, it was connected by an edge after ei in the
order, and thus must have higher weight. Since each F -light edge is selected with probability p,
the number of F -light edges considered between the j-th and j + 1th edge added to F is 1/p (this
is a geometric random variable). Since we add n − 1 F -light edges to F , so the expected number
of F -light edges is

∑n−1
i=1

1
p = n−1

p ≤
n
p .

The cost of the second line of Naive MST is mp = |G(p)|. The cost of the fourth line is n
p . Equating

these we get that p =
√

n
m . Using this, both of the calls to find the MST of the smaller graphs would

take O(
√
nm log n) time. The total time would be O(m+

√
nm log n). This is linear if m ≥ n log2 n.

We would like to have a linear time algorithm in general. To do this, we will compute the MST of
these constructed graphs recursively. Thus we obtain:

9

Algorithm: Linear MST (Karger-Klein-Tarjan’s algorithm)

Run 3 iterations of Boruvka’s algorithm
Set p = 1/2
Generate G(p) by sampling each edge with probability p
Use Linear MST on G(p) to obtain MSF Fp
Remove all Fp-heavy edges from G to form G′.
Use Linear MST to find MST of G′.

The run time of this algorithm has the recurrence T (m,n) = c(m+n)+T (m/2, n/8)+T (n/4, n/8).
It can be verified that T (m,n) ≤ 2c(m+ n) = O(m+ n) is a solution to this recurrence.

References

[1] S. Janson, “Tail bounds for sums of geometric and exponential variables,” Statistics & Proba-
bility Letters, vol. 135, pp. 1 – 6, 2018.

[2] J. B. Orlin, “Max flows in o(nm) time, or better,” in Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pp. 765–774, 2013.

[3] D. R. Karger and C. Stein, “A new approach to the minimum cut problem,” J. ACM, vol. 43,
no. 4, pp. 601–640, 1996.

[4] B. Chazelle, “A minimum spanning tree algorithm with inverse-ackermann type complexity,”
J. ACM, vol. 47, no. 6, pp. 1028–1047, 2000.

[5] B. Dixon, M. Rauch, and R. E. Tarjan, “Verification and sensitivity analysis of minimum
spanning trees in linear time,” SIAM Journal on Computing, vol. 21, no. 6, pp. 1184–1192,
1992.

10

