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Recall from last lecture:

Given (id, count) pairs (ai, li) where ai ∈ [m] for i = 1...n one at a time, we want to answer
questions about stream, with limited space O(poly log(m,n)) ideally.

We have seen

• Heavy Hitters: Count min sketch;

• Distinct elements problem.

1 Streaming

Let xi =
∑

j:i=aj
lj where lj ≥ 0 indicate the final count for symbol i in a stream, we define the pth

frequency moment be Fp =
∑

i∈[m] x
p
i .

There are some classic problems related to specific pth frequency moment, for example:

• p = 0: distinct element problem;

• p = 1: trivial (count elements problem);

• p = 2: measure of skewness.

If we want to get the explicit Fp, we will need at least linear space. In order to do it in log space,
we have to sacrifice accuracy.

Let F̂p be an estimate of Fp, we want to find an F̂p which is a (1 ± ε) approximation to Fp with
probability at least 1− δ.

1.1 Second Frequency Moment F2 Estimation

Here we introduce Alon-Matias-Szegedy algorithm for approximate F2 in log space.

Algorithm 1 (Alon-Matias-Szegedy).

Input: number of symbols m, length of stream n, and the stream.

Output: F̂2 (i.e. the estimate of F2).
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1. Choose Rademacher random variables ri i.i.d for each i = 1, . . . ,m, i.e. Pr[ri = ±1] = 1/2;

2. Initialize Z = 0;

3. While processing the stream, for each pair (aj , lj), update Z = Z + rilj where i = aj.

4. Output F̂2 = Z2.

Remark 2. Using 4-wise independent random variables as ri, we will need O(logm) space.

Remark 3. Updating Z during the process to maintain a partial sum of what we have seen so far,
so we do not need to count every xi =

∑
j:i=aj

lj and store all of {xi|i = 1, ...,m} in linear space.

Example 4. Assume m = 3, r1 = 1, r2 = 1, r3 = −1, and stream is (3, 1), (1, 1), (2, 1), (1, 1), (2, 1), (1, 1), (1, 1).
Calculate the explicit F2 and estimate F̂2 using Alon-Matias-Szegedy algorithm.

F2 = 42 + 22 + 12 = 21.

Z =
∑n

j=1 raj lj = 5, hence F̂2 = Z2 = 25.

Let us consider the expected value and variance of F̂2.

Claim 5. E[F̂2] = F2.

Proof. Note that

E[rirj ] =

{
1, if i = j

0, otherwise
, (1)

then

E[F̂2] = E[(
∑

i,j:i=aj

rilj)
2]

= E[(
∑
i

ri
∑
j:i=aj

lj)
2]

= E[(
∑
i

rixi)
2]

=
∑

1≤i,j≤m
xixjE[rirj ]

=
∑
i

x2i

= F2.

Thus, F̂2 is unbiased.

Claim 6. V ar[F̂2] ≤ 2(
∑

i x
2
i )

2 = 2F 2
2 .

Proof. Note that

E[F̂2
2
] =


0, if one symbol appears only once∑

i x
4
i , if i = j = k = l

6
∑

i 6=j x
2
ix

2
j , if i = j, k = l (or some other 2 pairs match)

, (2)
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then

E[F̂2
2
] = E[Z4]

=
∑

1≤i,j,k,l≤m
xixjxkxlE[rirjrkrl]

=
∑
i

x4i + 6
∑
i 6=j

x2ix
2
j .

So

V ar[F̂2] = E[F̂2
2
]− E[F̂2]

2

= E[Z4]− E[Z2]2

= (
∑
i

x4i + 6
∑
i 6=j

x2ix
2
j )− (

∑
i

x2i )
2

=
∑
i

x4i + 6
∑
i 6=j

x2ix
2
j − (

∑
i

x4i + 2
∑
i 6=j

x2ix
2
j )

= 4
∑
i 6=j

x2ix
2
j

≤ 2(
∑
i

x2i )
2

= 2(E[F̂2])
2

= 2F 2
2 .

Hence, we have a bounded variance, which can be used in concentrating the mean by Chebyshev’s
inequality.

Claim 7. Pr[F̂2 ∈ (1± c
√

2)F2] ≥ 1− 1
c2
.

Proof. By Chebyshev’s inequality,

Pr[|F̂2 − E[F̂2]| ≥ c
√
V ar[F̂2]] = Pr[|F̂2 − F2| ≥ c

√
2F2]

≤ 1

c2
.

Remark 8. In order to further reduce the variance hence increase sufficiency, we could apply the
idea of bootstrap aggregation to Algorithm 1:

1. Repeat the Alon-Matias-Szegedy algorithm k times in parallel to obtain F̂2
(1)
, ..., F̂2

(k)
;

2. Output F̂2
′
= 1

k

∑
i=[k] F̂2

(i)
.

Let us look at the expected value and variance of F̂2
′

from the modified algorithm.
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Claim 9. E[F̂2
′
] = F2.

Proof.

E[F̂2
′
] =

k∑
i=1

E[F̂2
(i)

]

k

= E[F̂2]

= F2.

Thus, F̂2
′

is unbiased.

Claim 10. V ar[F̂2
′
] = 1

kV ar[F̂2].

Proof.

V ar[F̂2
′
] =

1

k2
kV ar[F̂2]

=
1

k
V ar[F̂2].

Here we can verify that F̂2
′

is a (1 ± ε) approximation to F2 with probability at least 1 − δ by
Chernoff’s inequality.

Claim 11. Pr[F̂2
′ ∈ (1± ε)F2] ≥ 1− δ.

Proof. By Chernoff’s inequality, we have

Pr[|F̂2
′ − F2| ≥ εF2] ≤

V ar[F̂2
′
]

ε2F 2
2

=
1
kV ar[F̂2]

ε2F 2
2

.

(3)

Let k ∈ O( 1
δε2

), then equation 3 becomes

Pr[|F̂2
′ − F2| ≥ εF2] ≤

1
k2F 2

2

ε2F 2
2

=
δε2

ε2

= δ.

Hence, Pr[F̂2
′ ∈ (1± ε)F2] ≥ 1− δ.

Claim 12. Remark 8 needs O( 1
δε2

(log(m) + log(n))) space.

Observation 13. Another view of this problem:
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Let S ∈ Rk×m where Pr[Sij = ±1] = 1
2 , and let x =

∑
j∈[n] lj · ej where lj is the jth element and it

is from pair (aj , lj), then F̂2 = Sx = [z1, . . . , zk]
>.

We have

F̂2
′
=

∑
j∈[k] F̂2

(j)

k

=

∑
j∈[k] z

2
j

k

=
‖Sx‖22
k

= (1± ε)‖x‖22.

Hence, F̂2 could be approximated by calculating the L2-norm of x.

1.2 Dimension Reduction

Given t points x1, ..., xt ∈ Rm, we want to reduce dimension to k where k � m while keeping the
pairwise distance.

Observation 14. When t = 2, we have points x1, x2 with dimension m, and Sx1, Sx2 with dimen-
sion k = O( 1

δε2
).

Then with probability at least 1− δ, we have

‖Sx1 − Sx2‖22
k

=
‖S(x1 − x2)‖22

k
= (1± ε)‖x1 − x2‖22.

Observation 15. For a general t, we have points x1, ..., xt with dimension m, and Sx1, ..., Sxt
with dimension k = O( 1

δε2
).

Then with probability at least 1− δ, for any Sxi, Sxj where 1 ≤ i, j ≤ t, we have

‖Sxi, Sxj‖2 =
‖S(xi − xj)‖22

k
∈ (1± ε)‖xi − xj‖22

where k = O( 1
δε2

), and δ ≤ δ′

(t2)
, so k = O( t2

δ′ε2 ) .

However, k = t − 1 is trivial and exact, so this k = O( t2

δ′ε2 ) blows up dimension instead of re-
ducing dimension. In fact, we are able to approximate F2 in a much smaller dimension given the
Johnson–Lindenstrauss Lemma.

Lemma 16 (Johnson–Lindenstrauss Lemma). Given 0 < ε < 1, a point x ∈ Rm, and a number

k = O(
log( 1

δ
)

ε2
). Let S ∈ Rk×m where Sij ∼ N(0, 1), then we have

‖Sx‖22
k ≈ (1± ε)‖x‖22.

Proof. This proof is heavily related to Gaussian distribution, let us review some useful properties
first.
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Fact 17 (Gaussian distributionN(µ, σ2)). The probability distribution function is f(x) = 1√
2πσ2

exp(− (x−µ)2
2σ2 ).

Properties:

1. If G1 ∼ N(µ1, σ
2
1), G2 ∼ N(µ2, σ

2
2), then G1 +G2 ∼ N(µ1 + µ2, σ

2
1 + σ22).

2. If G ∼ N(0, 1), then σG ∼ N(0, σ2).

Define Y ′ =
‖Sx‖22
k . We want to obtain an expression of Gaussian distribution for it.

Let us first focus on each element of vector Sx, denote as zj , we have

zj = [Sx]j

=
∑
i

xiSij

= N(0,
∑
i

x2i )

= ‖x‖22N(0, 1).

Then we can rewrite Y ′ as

Y ′ =
‖Sx‖22
k

=

∑
z2j
k

=

∑
(‖x‖2Gj)2

k

= ‖x‖22

∑
G2
j

k

(4)

where G1, ..., Gm ∼ N(0, 1) i.i.d..

By definition of Gaussian distribution, we have E[G2
j ] = V ar[Gi]+E[Gj ]

2 = 1, thus the expectation
of Y ′ is

E[Y ′] = ‖x‖22E

[∑
j G

2
j

k

]
= ‖x‖22.

Hence, the expectation of Y ′ is as desired. Next, let us prove Y ′ belongs to the ε-bounds of ‖x‖22.

Define Y =
∑
G2
j

k , we want to prove Y ∈ (1± ε) with probability 1− δ.

Using Chernoff bound,

Pr[Y ≥ 1 + ε] = Pr[etkY ≥ etk(1+ε)]

≤ E[etkY ]

etk(1+ε)

=
∏
i∈[k]

(
E[etG

2
j ]

et(1+ε)

)
.

(5)
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Calculate the expected value of etG
2
j as

E[etG
2
j ] =

1√
2π

∫
etu

2
e−

u2

2 du

=
1√

1− 2t

(6)

for t < 1
2 .

Substitute equation 6 into equation 5:

Pr[Y ≥ 1 + ε] ≤
∏
i∈[k]

(
E[etG

2
j ]

et(1+ε)

)

=

( 1√
1−2t
etetε

)k

≤

(
1

et
√

1− 2t

)k
1

etεk
.

(7)

We can rewrite 1
et
√
1−2t as an exponential expression

1

et
√

1− 2t
= e−t−

1
2
log(1−2t)

= exp(t2 +O(t3)).

(8)

Let t = Θ(ε), and substitute equation 8 into equation 7:

Pr[Y ≥ 1 + ε] ≤

(
1

et
√

1− 2t

)k
1

etεk

≤ exp(kt2 +O(t3k)− tεk)

≤ exp(−Θ(kε2)).

(9)

By symmetry, we know Pr[Y /∈ 1± ε] ≤ 2 exp(−Θ(kε2)).

Hence, substituting (4) gives

Pr[Y ′ ∈ (1± ε)‖x‖22] = Pr[‖x‖22

∑
G2
j

k
∈ (1± ε)‖x‖22]

= Pr

[∑
G2
j

k
∈ (1± ε)

]
≥ 1− 2 exp(−Θ(kε2)).

Let k = O(
log( 1

δ
)

ε2
), we have Pr[Y ′ ∈ (1± ε)‖x‖22] ≥ 1− δ as desired.
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Corollary 18. Let S ∈ Rk×m be a matrix, where each element Sij ∼ N(0, 1), then

for any ~x1, . . . , ~xt ∈ Rm, Pr

[∥∥∥∥S~xi − S~xj√
k

∥∥∥∥2
2

= (1± ε) · ‖~xi − ~xj‖22

]
= 1− δ

for all points simultaneously if k ≥ O( log(t/δ)
ε2

).

There is another way to view the Johnson–Lindenstrauss Lemma, we could consider number-
medians and distribution-medians instead.

Claim 19. Given Sij ∼ N(0, 1), Sx = [z1, . . . , zk]
> where k is a constant, and zj ∼ N(0, ‖x‖22),

then F̂2
′
=

z21+...+z
2
k

k → ‖x‖22.

Proof. In this proof, we need to use the relationships between the cumulative distribution function
(CDF) and the median of a distribution. First, we introduce Lemma 20 and 21 to help complete
this proof.

Lemma 20. Let u1, ..., uk be i.i.d. random variables with cumulative distribution function F and
median m. Let u = median(ui, ..., uk), then

Pr

[
F (u) =

(
1

2
± ε

)]
≥ 1− exp(−Θ(ε2k)).

Proof. Let event Ei represent F (ui) <
1
2 − ε, then Pr[Ei] = 1

2 − ε. We have F (u) < 1
2 − ε if and

only if more than k
2 of Ei’s hold.

Using Chernoff bound,

Pr[F (u) <
1

2
− ε] ≈ exp(−Θ(ε2k)).

Symmetrically,

Pr

[
F (u) =

(
1

2
± ε

)]
≥ 1− exp(−Θ(ε2k)).

Lemma 21. Let F be the CDF of |G| where G ∼ N(0, 1). If F (z) = 1
2 ± ε, then z ∈ median(|G|)±

Θ(ε).

Then we start the formal proof. Define

F̂2 =
number −median(|z1|, ..., |zk|)
distribution−median(|G|)

, G ∼ N(0, 1). (10)

Since |zj | = ‖x‖2|Gj |, Gj ∼ N(0, 1), equation 10 could be written as

F̂2 = ‖x‖2
median(|G1|, ..., |Gk|)

median(|G|)
. (11)
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Figure 1: CDF of G

Let u = median(|G1|, ..., |Gk|), apply Lemma 20 to get F (u) = 1
2 ± ε with high probability. Then

from Lemma 21, we have u ∈ median(|G|)±Θ(ε).

Substitute the result to equation 11:

Y = ‖x‖2
median(|G1|, ..., |Gk|)

median(|G|)

= ‖x‖2
median(|G|)±Θ(ε))

median(|G|)

= ‖x‖2

(
1±Θ

(
ε

median(|G|)

))
= ‖x‖2(1± ε).

Definition 22. Distance D is p-stable if for i = 1...k, each Di ∼ D satisfies
∑

i xiDi ∼ ‖x‖pD
where x = [x1, . . . , xk]

> and x1, . . . , xk ∈ R. Note that this property only holds for p ∈ (0, 2].

Remark 23. F̂p ∈ (1± ε)Fp for p ∈ (0, 2] with O(poly log(m,n)) space.

1.3 Generalized Frequency Moment Fp Estimation

In this section, we will talk about estimating the generalized frequency moment Fp.

First, let us look at an algorithm which will go through the entire streaming two times while
estimating Fp.

Algorithm 24 (2 Pass).

1. In the first pass, pick j ∈ [1, n] uniformly at random, wait until observe i = aj;

2. In the second pass, compute xi = number of times item with label i is seen;
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3. Return F̂p = nxp−1i .

Let us discuss the expected value and variance of F̂p from the above algorithm.

Claim 25. E[F̂p] = Fp.

Proof.

E[F̂p] =
m∑
i=1

xi
n

(nxp−1i )

=
m∑
i=1

xpi

= Fp.

Thus, F̂p is unbiased.

Claim 26. V ar[F̂p] = nF2p−1.

Proof.

V ar[F̂p] ≤ E[F̂p
2
]

=
m∑
i=1

xi
n

(nxp−1i )2

= nF2p−1.

Hence, we have bounded the variance, which can be used in concentrating the mean by Chebyshev’s
inequality.

Claim 27. nF2p−1 ≤ m1− 1
p (Fp)

2.

Claim 28. This algorithm is O(m
1− 1

p

ε2
) sufficient.

Proof. Using Chebyshev’s inequality,

Pr

[
|F̂p − Fp|

Fp
> ε

]
= Pr[|F̂p − Fp| > εFp]

≤ V ar[F̂p]

ε2F 2
p

≤ m
1− 1

p

ε2
.

The 2 pass algorithm above can also be performed in the same pass, at the cost of accuracy.
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Algorithm 29 (1 Pass).

1. Pick j ∈ [1, n] uniformly at random, wait until observe i = aj;

2. In the rest of the pass, compute x′i = number of times label i is seen after aj (inclusive);

3. Return F̂p
′
= n(x′pi − (x′i − 1)p).

Again, we will take a look at its expected value and variance.

Claim 30. E[F̂p
′
] =

∑m
i=1 x

p
i

Proof.

E[F̂p
′
] = nE[x′i

p − (x′i − 1)p]

= n
1

n

m∑
i=1

xi∑
l=1

(lp − (l − 1)p)

=

m∑
i=1

xpi

= Fp.

Thus, F̂2
′

is unbiased.

Claim 31. V ar[F̂p
′
] ≤ p2V ar[F̂p]

Proof. Since

F̂p
′
= n(x′pi − (x′i − 1)p)

≤ np(x′i)p−1

≤ p(nxp−1i )

= pF̂p,

we have

V ar[F̂p
′
] ≤ p2V ar[F̂p]

≤ p2m1− 1
pF 2

p .

Claim 32. This algorithm is O(p2m
1− 1

p

ε2
) sufficient.

Proof. See Proof for Claim 28.
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