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1 Probabilistic Method

The Probabilistic Method is used to determine whether an object or solution (satisfying some given
conditions) exists. Finding such a solution using a deterministic method can prove very difficult
and complex and often times we can more easily reach a solution with a simpler and suitable
probabilistic model instead. We can show that an object or solution satisfying our condition exists
by proving that the probability of sampling an object having this property is greater than zero.
The probabilistic method can be described as taking the following steps:

1. Construct a probability space over the possible objects and their attributes (e.g. graphs)

2. Show that Pr(sampled object having the properties) > 0

For our first example, we consider the problem of coloring the edges of a graph with two colors so
that there are no large cliques with all edges having the same color.

Let us show an example and define the following:

Definition 1 (Complete Graph). We define Kn as the complete graph of n vertices where the graph
is undirected and every pair of distinct vertices is connected by a unique edge.

Theorem 2. If
(
n
k

)
2−(k2)+1 < 1 in Kn, one can color all the edges in Kn with 2 colors, subject to

no subgraph of size k(Kk) being monochromatic.

Proof. First, we construct our probability space of the possible solutions. Consider all the random

colorings of the edges (2(n2) many) with the colors red and blue and consider some fixed set of k
vertices.

We know the probability of getting a monochromatic graph is 2−(k2) + 2−(k2) = 2−(k2)+1

Where the first term on the left hand side is the chance of getting an all-red graph and the second
term the chance of getting an all-blue graph.

Second, we show that the probability of a solution existing is greater than 0. Now, using the union
bound, we get:
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Pr(∪iclique i is monochromatic ) ≤
∑

Pr(clique is not monochromatic)

=

(
n

k

)i
2−(k2)+1

< 1

 Pr(∩clique is not monochromatic)

This works for k = Θ(log(n)). For the deterministic model, it would be Θ(
√
n).

Definition 3 (Erdős-Rényi Graph Model). The Gn,p model, due to Erdős and Rényi, has two
parameters, n and p. The parameter n is the number of vertices of the graph and p is the edge
probability. For each pair of distinct vertices, v and w, p is the probability that the edge (v, w) is
present. The presence of each edge is statistically independent of all other edges and the graph-valued
random variable with these parameters is denoted by Gn,p.

Note that if we sample a graph from Gn,1/2, we can see that it is analogous to the problem above,
where an edge being in place would be a red edge and an edge being absent would be a blue edge.

The max clique size of a graph like this would be O(log(n)) and the max independent set would be
O(log(n)).

2 First Moment Method

The first moment method is a similar and sometimes simpler approach for proving the existence of
an object with desired properties. It consists in computing the expected value of a random variable
and then concluding that the random variable must take some values that are greater and smaller
than the expected value. In other words, if E[x] = c then Pr(X ≥ C) > 0. The following lemma is
a formal statement of the previous intuition.

Lemma 4. Let S be a probability space and X a random variable defined on S such that E[X] = µ.
Then Pr(X ≥ µ) > 0 and Pr(X ≤ µ) > 0

Proof. If Pr(X ≥ µ) = 0, then

µ =
∑
x

xPr(X = x) =
∑
x<µ

xPr(X = x) <
∑
x<µ

µPr(X = x) = µ

which is a contradiction. In a similar way, assuming that Pr(X ≤ µ) = 0 , gives:

µ =
∑
x

xPr(X = x) =
∑
x>µ

xPr(X = x) >
∑
x>µ

µPr(X = x) = µ

again yielding a contradiction

2



A direct application of the first moment method is related to independent sets. An independent
set in a graph G is a set of vertices with no edges between them. It is known that finding the
largest independent set in a graph is an NP-hard problem. The following theorem shows that the
probabilistic method can yield bounds on the size of the largest independent set of a graph. After
we have taken the 2 steps detailed below, the remaining vertices form an independent set in the
original graph.

Theorem 5. Let G = (V,E) be a graph on n vertices with m ≥ n
2 edges. Then it has an independent

set with at least n2

4m vertices.

Proof. The average degree of such a graph is d = 2m
n ≥ 1. We perform the following steps:

1. Iterate over all vertices and remove it with probability 1 − 1
d . If the vertex is removed, also

remove all adjacent edges.

2. Iterate through all remaining edges. Let each edge be connected to the first vertex i and the
second vertex j. Remove the edge (i, j) and then remove either i or j (selected randomly).

We define the following random variables:

X: The number of vertices left in the graph after step 1 is performed.

Y : The number of edges left in the graph after step 1 is performed.

These random variables are of interest because we know the following:

# vertices in the end ≥ X − Y

We can calculate the expected value of the number of vertices:

E[X] =
1

d
· n

=
n

d

And then the expected value of the number of egdes:

E[Y ] =

(
1

d2

)
·
(
nd

2

)
=

n

2d

In the expected value of Y, the term 1
d2

corresponds to the probability of both vertices of an edge
not getting removed (i.e. the edge surviving).

So we calculate the expected value and substitute the value of d:
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E[X − Y ] = E[X]− E[Y ]

=
n

d
− n

2d

=
n

2d

=
n2

4m

Note that the previous theorem is a weak version of Turán’s theorem.

Definition 6 (Girth of a graph). The girth of a graph is the length of the shortest cycle within the
graph. If there are no cycles within the graph, the girth is considered to be ∞.

The previous definition introduces another interesting application of the probabilistic method.
Intuition might make us think that dense graphs will have small girth. However, we will show that
there are dense graphs with relatively large girth.

Theorem 7. For any integer k ≥ 3 and n sufficiently large, there exist graphs with n vertices such
that the number of edges is at least 1

4n
1+1/k and the girth of the graph is at least k.

Proof. First we sample a random graph G ∈ Gn,p where p = n(1k)−1. We define the random variable
X as the number of edges in the graph. The expected value is:

E[X] = p

(
n

2

)
=

1

2
n(n− 1)n1/kn−1 =

1

2

(
1− 1

n

)
n1+

1
k

In addition, the number of possible cycles of length i is:

(
n

i

)
(i− 1)!

2

Where the term
(
n
i

)
is the different ways in which we can pick vertices for a cycle and the term

(i−1)!
2 is the number of ways in which we can order i vertices for a cycle, which we divide by 2 since

reverse orderings produce the same cycle.

Let Y the random variable that describes the number of cycles of length ≤ k − 1. With the
information above, we can calculate E[Y ]:

E[Y ] =
k−1∑
i=3

pi
(
n

i

)
(i− 1)!

2
=
∑ n!

(n− i)! · i!
· (i− 1)!

2
· pi =

∑ n!

2i · (n− 1)!
· pi

≤
∑

nipi =
∑

nini/k−1 =
k−1∑
i=3

n
i
k

≤ kn
k−1
k = kn1−1/k
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Now we modify the original graph G, removing one edge from each of the cycles whose length
≤ k − 1. After this is done, the modified graph has a girth of at least k. The random variable
X − Y will provide an upper bound on the number of remaining edges. In other words, X − Y ≤
the number of remaining edges. We can apply linearity of expectation to calculate it’s expected
value

E[X − Y ] =
1

2

(
1− 1

n

)
n1+1/k − kn1−1/k (1)

= n1+1/k

(
1

2
− 1

2n
− k

n2/k

)
(2)

≥ 1

4
n1+1/k (3)

Which proves that such a graph exists, it is important to note that the inequality in the last step
holds for large enough values of n.

The last application of this method has to do with the graph coloring problem, in which the
objective is to use the minimum number of colors to color all vertices so that every pair of adjacent
vertices receive different colors.

Definition 8 (Chromatic number). We define the chromatic number as the least number of colors
necessary to color all vertices in a graph so that no 2 neighbors (connected by an edge) have the
same color.

Theorem 9. For all k,l there exist G = (V,E) with a chromatic number larger than l, and girth
smaller than k

Proof. Let’s consider a random graph G ∈ Gn,p and define χ(G) as the chromatic number of graph
G and α(G) as the size of the maximum independent set of graph G. From this, we deduce:

n

χ(G)
≤ α(G)⇒ n

α(G)
≤ χ(G)

Each color defines an independent set with regards to α(G)

Pr[α(s) ≥ t] ≤
(
n

t

)
(1− p)(

t
2) ≤ nte−p(

t
2) =

(
n · e

p(t−1)
2

)t
Given that t is at most

⌈
3 ln(n)

p

⌉
, we can see that:

(
n · e

p(t−1)
2

)t
� 1

2

p = n
1
k
−1 ⇒ t ≈ Θ(n1−1/k log(n))⇒ α(G) ≤ Θ(n1−1/k log(n))

With a positive probability. We now remove one vertex from each cycle of length ≤ k − 1. These
removals do not increase independent set size. According to (3) in Theorem 7, the amount of
removed vertices is at most kn1−1/k and the final expression is
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χ(G′) ≥ |V (G′)|
α(G′)

≥ n− n1−1/k

3n1−1/k ln(n)
=
n1/k−1(n− n1−1/k)

3 ln(n)
≥ l

For large values of n.

3 Second Moment Method

Using the first moment method we can conclude that given a random variable, there is one outcome
with value that is at least E[x] or at most E[x]. We can also use Markov’s inequality to show that
if x ≥ 0, then Pr[x ≥ 1] < E[x]. If x is integral valued and E[x]� 1, then it follows that Pr[x = 0]
is high. The question becomes, how do we prove that Pr[x ≥ 1] is large?

Theorem 10. If x is integral, then Pr[x = 0] ≤ V ar[x]
(E[x])2

Proof. We can see that:

Pr[x = 0] ≤ Pr(|x− E[x]| ≥ E[x]) ≤ V ar[x]

(E[x])2

Remark 11. If either of the two following statements holds:

1. V ar[x] = o(E[x]2)

2. E[x2] = (1 + o(1))E[x]2

Then Pr[x = 0] is close to 0. This means that x ≥ 1 with high probability.

3.1 Thresholds in random graphs

Random graphs undergo some changes in their structure when the edge probability passes some
threshold value. One example of this is the appearance of cycles in Gn,p when p reaches the value
of 1/n. However, the most important example of this phenomenon is the emergence of a giant
component, an isolated sub-graph that contains a finite fraction of the entire graph’s vertices.

For small p, with p = d
n , d < 1, each connected component in the graph is small. For d > 1, there

is a giant component. There is a rapid transition at the threshold d = 1. Below the threshold, the
probability of a giant component is very small, and above the threshold, the probability is almost
one. This is an example of what is called a threshold behavior, as defined below.

Definition 12 (Threshold Behavior). A property of a random graph is said to possess a threshold
behavior if there exists a function f(n) such that:
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1. Almost certainly the graph Gn,g(n) does not have the property if:

lim
n→∞

g(n)

f(n)
= 0.

2. Almost certainly the graph Gn,h(n) has the property if:

lim
n→∞

h(n)

f(n)
=∞.

In the above definition, “almost certainly” means that the probability goes to one as n approaches
infinity, and h, g are arbitrary functions describing the probability over the edges.

Definition 13 (Sharp Threshold Behavior). A property has a sharp threshold behaviour if there
exists a function f(n) such that, for any E > 0, Gn,(1−E)f(n) almost certainly does not have the
property, but Gn,(1+E)f(n) does.

For example, let’s consider the property of having a clique of size 4. We can define the random
variable X as the number of 4-cliques in a graph. From this, we get:

E[X] =

(
n

4

)
p6 ≈ n4p6.

Note that if p = o(n−2/3) then E[X] = o(1) and we can use the first moment method to conclude
that Pr[X = 0]→ 0.

An example of a property with a sharp transition is that of a random graph having diameter less
than or equal to two. The diameter of a graph is the maximum length of the shortest path between
a pair of vertices.

This property will be studied for the remaining of this section and we will prove the following
theorem:

Theorem 14. The property that Gn,p has diameter two has a sharp threshold at p =

√
2 ln(n)
n .

Proof. If G has a diameter greater than two, we say that a pair of vertices i,j is a “bad pair” if
there is no edge between them and no third vertex is connected to both i and j.

For every pair i, j with i < j, let Xij be an indicator random variable of i, j being a bad pair. Then
E[Xij ] = (1− p)(1− p)n−2 as each of the other n− 2 vertices is not connected to both i and j. Let

X =
∑
i<j

Xij

be the number of bad pairs of vertices. Note that a graph has diameter at most two if and only if
it has no bad pairs. i.e, X = 0. We then get:

E[X] =
∑

E[Xij ] =

(
n

2

)
(1− p)(1− p2)n−2.
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Setting p =

√
c ln(n)n ,

E[X] ≈ n2

2

(
1−

√
c ln(n)

n

)(
1− c ln(n)

n

)n−2
≈ n2

2
e−c ln(n)

≈ n2−c

2
.

If c > 2, then limx→∞E[X] → 0 and the First Moment Method gives us a diameter of ≤ 2 with
high certainty.

Next, consider the case c < 2, where limx→∞E[X] → ∞. We need no use a second moment
argument to prove that almost certainly the graph has a bad pair and subsequently a diameter
greater than two.

E[X2] = E

∑
i<j

Xij

2 = E

∑
i<j

Xij

∑
k<l

Xkl

 = E

∑
i<j
k<l

XijXkl

 =
∑
i<j
k<l

E [XijXkl] .

The previous summation can be partitioned into three different cases depending on the distinct
number of indices among i, j, k and l that are involved. We now look at three cases:

1. i 6= j, k 6= l:

∑
i<j
k<l

E [XijXkl] =
∑
i<j
k<l

E[Xij ]E[Xkl] ≤

∑
i<j

E[Xij ]

(∑
k<l

E[Xkl]

)
= (E[X])2.

2. (i, j) = (k, l):

∑
i<j
k<l

E [XijXkl] =
∑
i<j

E[X2
ij ] =

∑
i<j

E[Xij ] = E[X].

This is because all Xij are indicator variables for which Xij = X2
ij .

3. (i, j), (i, k): Suppose that both pairs (i, j) and (i, k) are bad. Then, for all other vertices
either not adjacent to i or adjacent to i but not adjacent to j + k, the probability would be
(1− p) + p(1− p)2 ≈ 1− 2p2. So:

E[XijXik] = (1− p)2(1− 2p2)n−3 ≈ e−2p2n.

Since the number of triples of can only be 3
(
n
3

)
, then:

∑
i<j
k<l

E [XijXkl] <
n3

2
e−2p

2n.
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Now, recall that p =

√
c ln(n)n and substitute that in the previous expression:

∑
i<j
k<l

E [XijXkl] ≤
n3

2
e−2c ln(n) =

1

2
n3−2c = o(E[X]2).

Finally, adding all the term together we get:

E[X2] ≤ E[X]2 + E[X] + o(E[X]2) = (1 + o(1))E[X]2.

By the remark of the second moment method (Theorem 10). We conclude that if c < 2,
X ≤ 1 almost certainly, meaning that the diameter is ≥ 3 with a high degree of certainty.

4 Lovasz Local Lemma (LLL)

Let E1, E2, ..., En be a set of “bad” events that we would like to avoid. In this case, we would like
to reach the goal Pr[

⋂
iEi] > 0 where none of these events happen. This would be easy if the events

E1, E2, ..., En were independent and
∑

Pr[Ei] < 1 were union bound.

Definition 15 (Dependency Graph). A dependency graph G is a graph with vertices {E1, E2, ..., En}
where the edges represent a dependency of one object on another.

Ei is mutually independent of {Ej |(i, j) /∈ E}, that is Pr (Ei| ∩j∈I Ej) = Pr(Ei)⇔ Ei is mutually
independent of {Ej : j ∈ S}. (Note: ∀I ⊆ S)

Theorem 16 (Lovasz Local Lemma). Let E1, . . . , En be a set of events and suppose the following
hold:

1. Pr(Ei) ≤ p

2. The maximum degree in G is at most d

3. 4dp ≤ 1

Then

Pr

⋂
i∈[n]

Ei

 > 0

Before going into the details of the proof, we show two applications of the Local Lemma.

Example 4.1 (k-SAT). Given a boolean formula with exactly k variables in each clause. We would
like to find a truth assignment to the variables x1, x2, . . . , xn such that every clause C1, C2, . . . , Cm
is satisfied. For example, the following assigment:

x1 = False, x2 = True, x4 = False
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is a satisfying assignment to the Boolean formula:

(x1 ∨ x2 ∨ x4) ∧ (x̄1 ∨ x3 ∪ x̄4) .

This problem is NP-complete in general, but we can prove that if each variable appears in a small
number of clauses, then the formula has a satisfying assignment.

Theorem 17. If no variable appears in more than T = 2k

4k clause, then the formula has a satisfying
assignment.

Proof. Consider a random assignment were each variable is set to true with probability 1/2 inde-
pendently. Let Ei be the bad event that i-th clause is not satisfied by the random assignment. Since
each clause is a disjunction of k variables, this event happens with probability p = Pr(Ei) = 1

2k
.

Note that the event Ei is mutually independent with other events that do not share variables with
Ei. So, the maximum degree d in the dependency graph is at most:

kT ≤ k
(

2k

4k

)
= 2k−2.

Since 4dp ≤ 4(2k−2)(2−k) = 1, there is an outcome with no bad events , hence a satisfying assign-
ment.

Example 4.2 (Disjoint Paths). Given a graph with k pairs {(s1, t1), (s2, t2), . . . , (sk, tk)}, we
would like to find a path pi connecting si and ti such that the paths {p1, p2, . . . , pk} are edge-
disjoint. This problem is NP-complete, but we can use the local lemma to show that there is
always a solution if the possible paths do not share too many edges with each other.

Theorem 18. For each 1 ≤ i ≤ k let Pi be collection of L paths connecting si and ti. Suppose
each path in Pi does not share edges with more than C paths in Pj for i 6= j and 8kC

L ≤ 1. Then
there is a way to choose pi ∈ Pi so that the paths {pi, . . . , pk} are edge-disjoint.

Proof. Consider a random experiment that for 1 ≤ i ≤ k , we choose a random path pi ∈ Pi
connecting si and ti. Let Eij be the bad event that pi and pj are not edge-disjoint. Since a path in
Pi share edges with at most C paths in Pj and there are L paths in Pi, we have p = Pr(Eij) ≤ C

L .

Now, since Eij is mutually independent with all the other events, we have that the maximum
degree d in the dependency graph is at most 2k. As 4dp ≤ 4 × 2k × C

L ≤ 1 by our assumption,
the local lemma implies that there is an outcome of the experiment with no bad events, hence an
edge-disjoint path solution.

Now that we have seen the applications of the Lovazs Local Lemma, lets get into the details of the
proof.

Proof. We prove that Pr
(⋂

i∈S Ēi
)
> 0 by induction on |S|. To prove this, an intermediate step is

required. We need to prove that if |S| < s, then for all k /∈ S we have

Pr

Ek|⋂
j∈S

Ēj

 ≤ 2p
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We will prove the intermediate step also using induction. Note that the base |S| = 1 can be seen
from the fact that Pr

(
Ēi
)

= 1− Pr (Ei) = 1− p > 0. For |S| > 1:

For the inductive step we assume that S = {1, 2, . . . , l}, then:

Pr

(
l⋂

i=1

Ēi

)
=

l∏
i=1

Pr

Ēi| i−1⋂
j=1

Ēj



=
l∏

i=1

1− Pr

Ei| i−1⋂
j=1

Ēj


At this point we can use the induction hypothesis to see that:

≥
s∏
i=1

(1− 2p) > 0

Next, let S1 = {j ∈ S|(k, j) ∈ E} and S2 = S − S1. Note that if |S| = |S2|, the Ek is mutually

independent with all the other events in S and Pr
(
Ek|

⋂
j∈S Ēj

)
= Pr (Ek) ≤ p

It is then safe to continue with the case |S2| < s. Let FS =
⋂
i∈S Ei, FS1 =

⋂
i∈S1

Ei and

FS2 =
⋂
i∈S2

Ei. Then, applying the definition of conditional probability:

Pr (Ek|FS) =
Pr (Ek ∩ FS)

Pr (FS)

=
Pr (Ek ∩ FS1 ∩ FS2)

Pr (FS)

=
Pr (Ek ∩ Fs1 |Fs2) Pr (Fs2)

Pr (Fs1 |Fs2) Pr (Fs2)

=
Pr (Ek ∩ Fs1 |Fs2)

Pr (Fs1 |Fs2)

We can bound the numerator of the previous expression using the fact that the probability of an
intersection is always less that the probability of any of the events in addition with the fact that
Ek is independent of the events in S2

Pr (Ek ∩ FS1 |FS2) ≤ Pr (Ek|FS2) = Pr (Ek) ≤ p

For the denominator we can establish a lower bound using the fact that |S1| ≤ d:

11



Pr (FS1 |FS2) = Pr

⋂
i∈S1

Ēi|
⋂
j∈S2

Ēj


≥ 1−

∑
i∈S1

Pr

Ei| ⋂
j∈S2

Ēj


≥ 1−

∑
i∈S1

2p

≥ 1− 2pd

≥ 1

2

Using the upper bound for the numerator and the lower bound for the denominator, we prove the
induction:

Pr (Ek|FS) =
Pr (Ek ∩ FS1 |FS2)

Pr (FS1 |FS2)

≤ p

1/2
= 2p

(Note that 2p ≥ 1− d(2p). Using the fact that 4dp ≤ 1, we get 2p ≥ 1− d(2p) ≤ 1
2)

Then the theorem follows from:

Pr

(
n⋂
i=1

Ēi

)
=

n∏
i=1

Pr

Ēi| i−1⋂
j=1

Ēj


=

n∏
i=1

1− Pr

Ei| i−1⋂
j=1

Ēj


≥

n∏
i=1

(1− 2p) > 0
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