
CS 761: Randomized Algorithms Fall 2019

Lecture 7 — October 25, 2019

Prof. Gautam Kamath By: Amur Ghose, Cameron Seth
Edited by Vedat Levi Alev

Disclaimer: These notes have not been subject to the usual scrutiny reserved for formal publica-
tions.

1 Random Walk

Given a graph G, a random walk starts at a node and at each time step moves to a uniformly
random neighbour of the current node. We are interested in the following questions:

Question 1. What is the limiting distribution? (stationary distribution)

Question 2. How many steps before approaching the limiting distribution? (mixing time)

Question 3. Starting from node s, how long does it take to reach node t? (hitting time)

Question 4. How long does it take to visit each node at least once? (cover time)

2 Markov Chain

A Markov chain can be represented by a more generalized random walk on a directed graph. In
particular, a Markov chain starts at a node and at each time step moves to a neighbour of the
current node according to the transition probability matrix P .

Pij = Pr[next state is j given current state i]

Let Xt denote the state of the Markov chain at time t. The defining feature of a Markov chain is
that the future behaviour of the Markov chain depends only on its current state. Specifically:

Pr[Xt = at|Xt−1 = at−1, . . . , X0 = a0] = Pr[Xt = at|Xt−1 = at−1] = P(at−1)(at)

Example 1. In the following graph the nodes are the possible states of the Markov chain and the
edge weights represent the probability of following that edge on the next time step.

1

10 2

3

1/2

1/3

1/6

3/4

1/4

1/2

1/4

1/4

1

The transition probability matrix is 
0 1

4 0 3
4

1
2 0 1

3
1
6

0 0 1 0
0 1

2
1
4

1
4


Let pt(i) be the probability of being at state i at time t. Then at any time t, ~pt is a probability
distribution over the states. For example, if we start at the first state then ~p0 = (1, 0, 0, . . . , 0). If
we have a random start then ~p0 = (1

n , . . . ,
1
n).

By definition we can calculate the state at time t+ 1 as pt+1(j) =
∑n−1

i=0 pt(i)Pij . The vector form
is ~pt+1 = ~ptP and in general the recurrence simplifies to ~pt+m = ~ptP

m.

2.1 States

Consider a finite Markov chain with n states and associated graph G = (V,E). Denote the states
s1, . . . , sn.

Definition 1. A Markov chain is irreducible if G is strongly connected, i.e. there exists a directed
path from i to j for all pairs of states (i, j). In other words ∀i, j ∈ V,∃l > 0 such that Pr[Xt+l =
sj |Xt = si] > 0.

Example 2. The Markov chain graph in Example 1 is not irreducible because the there exists no
path from the 2 node to the other nodes.

Definition 2. The period of a Markov chain d is defined as d(si) = gcd({t ∈ N|(P t)ii > 0, t > 0}).
If d(si) = 1 ∀i ∈ V then the Markov chain is aperiodic. Otherwise it is periodic.

Example 3. The following Markov chain is periodic with period 3.

2

1

0 2

1 1

1

Theorem 3. If a Markov chain is finite, irreducible and aperiodic then

∃T <∞ such that (P t)ij > 0, ∀t ≥ T, ∀i, j ∈ V

Definition 4. ~π is a stationary distribution of a Markov chain if ~π = ~πP .

Definition 5. Given distribution ~p = (p1, . . . , pn) and ~q = (q1, . . . , qn) the total variation dis-
tance is

dTV (~p, ~q) =
1

2

n∑
i=1

|pi − qi|

In the context of Markov chains, ~pt converges to ~q if limt→∞ dTV (~pt, ~q) = 0.

Definition 6. The hitting time from i to j is defined as Hij = min({t ≥ 1 | Xt = sj , X0 = si}).
The expected hitting time is hij = E[Hij].

Theorem 7 (Fundamental Theorem of Markov Chains). For any finite, irreducible and aperiodic
Markov chain:

1. There exists a stationary distribution ~π.

2. The distribution ~pt will converge to ~π as t→∞ regardless of the initial state ~p0.

3. ~π is unique.

4. πi = limt→∞(P t)ii = 1
hii

.

3 PageRank

Consider a directed graph G = (V,E) of the web where a node is a webpage and each directed edge
is a link from one webpage to another. We want to rank the pages by importance. Intuitively, a
webpage is important if other important pages link to it.

3.1 PageRank Algorithm

1. Assign a pagerank value of 1
n to each node.

2. For each node divide the current pagerank value by the out-degree of the node, and send to
each out-link equally.

3. The pagerank of each node is updated to be the sum all of values received.

3

3.2 Equilibrium States

We are interested in the equilibrium state of the algorithm. First, observe that this algorithm
resembles a Markov chain with transition probability matrix

Pij =

{
1

degout(i)
if page i links to page j

0 otherwise

At each step the new pagerank of a node j is
∑

i:(i,j)∈E
pagerank(i)
degout(i)

. Letting pagerank(i) = p(i)

it follows that a stationary distribution of the Markov chain is ~p = ~pP . By the Fundamental
Theorem of Markov Chains, if the web is finite, irreducible and aperiodic then a unique stationary
distribution exists and this algorithm will converge to it. The stationary distribution gives the
unique equilibrium pagerank values we are interested in.

Example 4. In the example below an equilibrium pagerank setting is (A,B,C,D,E, F,G,H) =
(4
13 ,

2
13 ,

2
13 ,

1
13 ,

1
13 ,

1
13 ,

1
13 ,

1
13). After one step of the algorithm the pageranks of all the nodes stay the

same.

A

B C

D E GF

H

3.3 Scaled PageRank

In general the web is not irreducible and aperiodic. So the algorithm above will not necessarily
find an equilibrium. It is also possible that the algorithm converges to a equilibrium that doesn’t
make sense (i.e. having all the pagerank concentrated on one or two outlying pages). Instead we
modify the algorithm as follows.

1. Assign a pagerank value of 1
n to each node.

4

2. For each node divide the current pagerank value by the out-degree of the node, and send to
each out-link equally.

3. The pagerank of each node is updated to be the sum all of values received.

4. Select a scaling factor s with 0 ≤ s ≤ 1. Scale down each pagerank by a factor of s.

5. Add 1−s
n to the pagerank of every node.

After scaling down the total pagerank, the algorithm redistributes the leftover pagerank to all the
other nodes. Hence the total pagerank will still sum to 1. The new transition probability matrix
will be

Pij =

{
s

degout(i)
if page i links to page j

1−s
n otherwise

The graph associated with the new Markov chain is strongly connected and aperiodic so we are
guaranteed an equilibrium solution.

4 WalkSAT

It is well known that 3-SAT is a hard problem, but what about 2-SAT? We define the problem as
follows with Boolean variables Z1 to Zn. We will indicate the corresponding formula in CNF form
as

M∧
i=1

Ci, Ci = A ∨B

Where both A,B are either Zi or Z̄i for some i. The 2 in 2-SAT arises from having exactly 2 literals
per clause Ci.

The algorithm pseudocode is as follows:

• Start at an arbitrary assignment of Zi values

• For 200n2 iterations, repeat the following step, and stop if the formula evaluates to true

• Pick any clause C evaluating to false. Choose a random Zi appearing in C and flip it.

• If you got a satisfying assignment, return it. Else return UNSAT.

Note that you have to evaluate the formula per iteration. Hence this has O(n3) complexity.

Let S be any configuration of Zis which satisfies the formula. At iteration i consider the assignment
of variables as Ai and the random variable Xi as the number of elements in common between Ai

and S. Now, suppose Xi = 0. We wish to consider the Markov chain on Xi’s values as the states
of interest.

5

If Xi = 0 then we are assured of Xi+1 = 1, as regardless of what variable we flip, everything at
Xi = 0 is “misaligned”. Hence

Pr[Xi+1 = 1|Xi = 0] = 1

We now consider 1 ≤ Xi ≤ n− 1. Observe that if we pick an unsatisfied clause, at least one of the
variables must be set to a value that is ‘incorrect’ relative to S. Hence we get

Pr[Xi+1 = j + 1|Xi = j] ≥ 1

2

Pr[Xi+1 = j − 1|Xi = j] ≤ 1

2

The above is hard to analyze. However, let us create mirror variables Yi that have the same domain
as Xi that obey

Pr[Yi+1 = 1|Yi = 0] = 1

Pr[Yi+1 = j + 1|Yi = j] =
1

2

Pr[Yi+1 = j − 1|Yi = j] =
1

2

It is clear that if we take some M steps to find the satisfying assignment in terms of Y i.e. Yi = n
at i = M we’ll take ≤ M to find it using Xi in expectation. Let hj be the number of steps in
expectation to reach n if we start at spot j at some Yi.

With 1/2 probability we advance, and with 1/2 we take a step back. Immediately we get the
recursion

hj =
1

2
(hj+1 + 1) +

1

2
(hj−1 + 1)

Simplify to get

hj − hj+1 = hj−1 − hj + 2

Recall that at n no time is required, and at step 0 we are bound to move forward

hn = 0, h0 − h1 = 1

Writing the whole thing as a telescoping sum

6

hj − hj+1 = hj−1 − hj + 2 = hj−2 − hj−1 + 4 · · · = 2j + h0 − h1 = 2j + 1

Now use that to get

h0 = h0 − 0 = h0 − hn =

n−1∑
i=0

(hi − hi+1) =

n−1∑
i=0

(2j + 1)

The sum of consecutive odd numbers are the square numbers. Hence

h0 = n2

Let’s assume we run for 2cn2 times, 2 ≤ c ∈ N. The probability of not succeeding in the first
2n2 steps is ≤ 1/2 by Markov. The next 2n2 steps begin from a step i ≥ 0 and have an expected
time of hitting n which is ≤ n2. Therefore, if we run for 200n2 steps and repeat this argument, we
end up with a success probability which is ≥ 1 − 1/200 (Markov) but more sharply ≥ 1 − 1

2100
by

noting that we can repeat this argument of having a success probability ≥ 1/2 for every 2n2 steps,
reapplying Markov’s while starting from any i, and that failure implies we chose an outcome with
probability ≤ 1/2 every time.

5 3-SAT WalkSAT

Unlike 2-SAT, we should anticipate an exponential run time in expectation for this problem as it
is well known to be hard. In 3-SAT, the CNF form associates clauses with 3 variables. Repeating
the previous arguments gives us, for our auxiliary variables Yi, hj as before,

hn = 0, hj =
2

3
hj−1 +

1

3
hj+1 + 1

h0 − h1 = 1, hj − hj+1 = 2(hj−1 − hj) + 3

Solve the recursions to get

hj − hj+1 = 2j+2 − 3→ hj = 2n+2 − 2j+2 − 3(n− j)

h0 = 2n+2 − 3n− 4

To frame the pseudo code, let us try the following: We will repeat each internal iteration n
times, where within each such, we will generate a random assignment, and perform 3n steps where
in each step we pick a random unsatisfied clause and flip a variable. We shall return the satisfying
assignment - or UNSAT - as before.

7

Now suppose we have X0 = n− j, i.e. j ‘mismatches’ relative to the satisfying assignment. We can
reach n in 3j steps should we go j steps right (net), which solves to moving 2j steps ahead and j
backwards. The probability of that would be

(
3j

j

)
(
2

3
)j(

1

3
)2j

Apply Stirling’s approximation

√
2πm(

m

e
)m ≤ m! ≤ 2

√
2πm(

m

e
)m

The binomial coefficient above can thus be bounded by

3j!

2j!j!
≥

√
2π(3j)

4
√

2π(2j)
√

2π(j)
× (

3j

e
)3j(

e

2j
)2j(

e

j
)j

The RHS simplifies to

√
3

8
√
πj

(
27

4
)j =

c√
j

(
27

4
)j , c =

√
3

8
√
π

So, probability of reaching n starting at j is

≥ c√
j

(
27

4
)j(

2

3
)j(

1

3
)2j =

c√
j

(
1

2
)j

Now we can try to get the probability of reaching n by observing we start with a random assignment.
Therefore the probability of exactly j mismatches is trivially

(
n
j

)
2−n. We can now get the probability

of hitting n by computing

n∑
j=0

c√
j

(
1

2
)j
(
n

j

)
(
1

2
)n ≥ c√

n
(
1

2
)n

n∑
j=0

(
n

j

)
(
1

2
)j

Observe that the term within the summation is just the binomial expansion when expanding (1 +
1/2)n. Therefore, the expression is

c√
n

(
1

2
)n(1 + 1/2)n =

c√
n

(
3

4
)n

So, on expectation, we’ll need
√
n
c (43)n tries to get a success. Overall, the algorithm is O(n1.5(1.33)n)

(the extra n coming from the evaluation per iteration) and the best known algorithm so far is
O(1.308n). As mentioned at the start of the section, this algorithm for 3-SAT has exponential
runtime in expectation, unlike the 2-SAT algorithm.

8

a
1

Rab

b

Resistance equation: Rab = φa − φb when I = 1

6 Random walks on undirected graphs

Here, we will have a transition probability that is uniform over all neighbours of a vertex v ∈ V
where the graph G = (V,E) i.e. vertex and edge sets in standard notation.

Lemma 8. The stationary distribution on an undirected connected non bipartite graph for the
random walk on its vertices is d(v)

2m , where d(v) is the degree of v ∈ V and m = |E|

To prove this, note that if P be the transition matrix, Puv = 1
d(v) as per definition. Take the above

stationary distribution as Π and check that Πv = (ΠP)v, with ‖Π‖1 = 1 being trivially true.

Πv =
∑

u∈N(v)

d(u)

2m

1

d(u)
=
d(v)

2m

7 Graphs as electrical networks

In the case of interpreting graphs as electrical networks, an edge is a resistor of resistance 1 (weighed
graphs would be more general and cover all resistors) . We recall the two basic laws of circuits as
Kirchoff’s law : the current entering any node v is equal to leaving it, and Ohm’s law, which can
be stated as V = RI, V being the potential difference across a resistor R and I the current across.
More formally, given fuv, ruv as the current and resistance from u to v respectively, we can come
up with a voltage vector φ : V → R such that

φu − φv = fuvruv,∀u, v ∈ V

Recall that we have by Ohm’s the law relating φ and resistance: R values are equivalently definable
as potential (φ) differences when currents are set to 1. The toy circuit provided shows a simple
circuit solved by repeatedly applying the above laws.

Now, for such graphs, we can talk about huv - the hitting time - the usual way, but we can also
define the symmetric quantity of commute time as Cuv = huv + hvu. Observe that huv might be
quite different from hvu. For a concrete example, construct:

• The complete graph on n vertices Kn as G

• Take any fixed v ∈ G and add a vertex connected only to v as v1. Now add another vertex
connected only to v1, and so on, till you have a “line” till vn.

• Take any v′ ∈ G. Consider the hitting time starting from v′ till vn. hv′,vn is O(n3). However,
hvn,v′ = O(n2).

9

1

a, φa = 1.2

3

b, φb = 0

1

c, φc = 0.6

1

1

Toy circuit

• Intuition: Starting from the “rod’s edge”, we can only travel towards the clique-shaped graph.
This’ll take O(n2) steps (recall analysis of 2-SAT WalkSAT) . Escaping the clique requires
being at the escape spot, therefore an additional factor of n appears. This kind of structure
is called the Lollipop graph.

8 Relating commute time and resistance

Theorem 9. Given an undirected unweighed graph G = (V,E), ∀u, v,∈ V , we have that Cuv =
2mRuv where m = |E| and Ruv is the effective resistance given all edges have resistance 1.

To prove this, pick u, v and fix them, and ∀x ∈ V , inject deg(x) of current into it. Remove 2m
current from v. Note that net flow of current into the graph as a whole is zero as

∑
x∈V deg(x) = 2m.

By Kirchoff’s law above, we have that for all nodes, current into the node equals current out. Let
fij be the directed flow of current i→ j, and, writing N(x) as the neighbourhood of a node x with
d(x) = deg(x):

d(x) =
∑

w∈N(x)

fxw =
∑

w∈N(x)

φx − φw =
∑

w∈N(x)

φxv − φwv

The second equation follows since φv cancels out from both terms. Observe that we have a recursion
for hxv as we can go to any of x’s neighbours and add 1 to our total time taken to hit.

hxv =
∑

w∈N(x)

(hwv + 1)
1

d(x)
→ d(x)hxv = d(x) +

∑
w∈N(x)

hwv

And since d(x)hxv =
∑

w∈N(x) hxv, we get

d(x) =
∑

w∈N(x)

(hxv − hwv)

Compare this equation to the previous one for φ. For it to hold identically, we’ll need φxv = hxv,
for all x ∈ V . By the definition of the potential function φ we have hvv = φvv = 0.

10

We now carry out the reverse process. Instead of v, we will now inject 2m at u, and take d(x) out
from each x ∈ V . We’ll get hxu = φxu, off of this by repeating the analysis for v. Now, we add the
two cases, by the principle of superposition. We took d(x) in and out so except u, v there will be
no current. Between u, v we’ll have a current flow of 2m.

φuv + φvu = huv + hvu = Cuv

But we got these potential values for a current flow (I) of 2m. The potential differences (V) on the
LHS are writable as V = RI, via Ohm’s law. This gives us the sought result:

Cuv = 2mRuv

References

[1] David Easley and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly
Connected World. Cambridge University Press, New York, NY, USA, 2010.

[2] David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American
Mathematical Soc., 2017.

[3] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, New York, NY, USA, 1995.

11

