
CS 761: Randomized Algorithms Fall 2019

Lecture 8 — November 1, 2019

Prof. Gautam Kamath By: Seung Gyu Hyun, Reza Karegar
Edited by Vedat Levi Alev

Disclaimer: These notes have not been subject to the usual scrutiny reserved for formal publica-
tions.

Recall from last lecture:

Definition 1 (Hitting Time). huv: The expected number of steps for a random walk starting at u
to reach v for the first time.

Definition 2 (Commute Time). cuv: The expected time for the random walk to reach v from u and
then visit u again. That means: cuv = huv + hvu

Definition 3 (Cover Time). C(G): Expected first time that all vertices are visited.

Definition 4 (Effective Resistance). Ruv: Resistance between vertices u and v.

Theorem 5. ∀u, v, cuv = 2mRuv

Corollary 6. For edge (u, v) = e ∈ E, cuv ≤ 2m.

Proof. Since there exists an edge between u and v, Ruv ≤ 1 and therefore cuv ≤ 2m.

Theorem 7. For the cover time C(G) of a graph we have: C(G) ≤ 2m(n− 1) ≤ n3

Proof. Construct T a spanning tree of G. To cover every vertex in G, we can consider the commute
time for every adjacent pair of vertices in T . Therefore:

C(G) ≤
∑
u,v∈T

Cuv ≤
∑

2m = 2m(n− 1)

This bound is not tight in general. If we have a graph consisting of a clique of n/2 vertices and a
line of the rest, then the cover time is n3. Matthews showed that if we have a clique of n vertices,
the cover time is O(n log n) [1].

Theorem 8. Let R(G) = maxu,v Ru,v and C(G) be cover time. We have:

mR(G) ≤ C(G) ≤ 2e3mR(G) lnn+ n

Proof. We first prove the lower bound for C(G), using the fact that C(G) is at least as large as the
hitting time for the hardest pair of vertices:

C(G) ≥ max{huv, hvu}

≥ Cuv
2

= mRuv

1

The other direction: Fix some vertex s. h∗s ≤ 2mR(G), ∀∗. With probability ≤ 1
e , a random

walk has not been reached v after 2e3mR(G) (Markov’s).

By Chernoff bound, haven’t reached s after 2e3mR(G) lnn steps with probability ≤ 1
n3 . Using

union bound, we get that every vertex is visited with probability ≥ 1− 1
n2 . Therefore, by using the

previous n3 upper bound for the case that happens with probability 1/n2, we have:

C(G) ≤
(

1− 1

n2

)
2e3mR(G) lnn+

(
1

n2

)
n3

≤ 2e3mR(G) lnn+ n

1 Graph Connectivity

We are concerned with the problem of determining the connectivity of graph in logarithmic space:
Given vertices s, t ∈ V we would like to decide whether there is a path from s to t using logarithmic
space only. We can use the following randomized procedure:

1. We start at s.

2. For 2n3 steps:

(a) We perform a random walk and move to another vertex.

3. If t is seen, we output “yes”, otherwise “no”.

Using Markov’s inequality, we can show that this algorithm succeeds with probability ≥ 1/2. There
is also a deterministic algorithm by Reingold that can achieve this deterministically [2].

1.1 Mixing time and coupling

In this document, we will use ‖ · ‖ for the total variation distance between two probability distri-
butions. Up to a factor of 2, this is equivalent to the `1-distance between the vectors.

Definition 9 (Total variation distance). ‖p− q‖ = 1
2

∑
i∈S |pi − qi|, where p and q are probability

vectors.

π is the stationary distribution of P (π = πP). Let p
(t)
X be the distribution after t steps starting at

X, ∆X(t) = ‖p(t)
X − π‖ and ∆(t) = maxX∈S ∆X(t). Furthermore, let YX(ε) = min{t : ∆X(t) ≤ ε}

and Y (ε) = maxX∈S YX(ε). The Markov chain described by P is rapidly mixing if Y (ε) is polynomial
in ln(1/ε) and the number of states.

Assume Mt is a Markov chain with state space S. Let Zt be a jointly distributed pair of random
variables, each of which obey the law of the chain when observed individually. In particular, Xt,
Yt and Mt all follow the same law. Zt = (Xt, Yt) is a coupling on S × S iff:

2

1. Pr[Xt+1 = x′|Zt = (x, y)] = Pr[Mt+1 = x′|Mt = x]

2. Pr[Yt+1 = y′|Zt = (x, y)] = Pr[Mt+1 = y′|Mt = y]

Example 10. This condition always holds for (x, x)→ (x′, x′), i.e., when coupling a Markov chain
with itself.

1.2 Coupling Lemma

Assume Zt = (Xt, Yt) is a coupling of Markov chains X and Y . Then:

Y (ε) ≤ min{T ≥ 0 : Pr[XT 6= YT | X0 = x, Y0 = y] ≤ ε,∀x, y ∈ S}

Intuition: The probability of XT and YT disagreeing on step T can be used to bound how far the
Markov chain is from mixing on step T .

1.3 Random walk on hypercube

Consider a d-dimensional hypercube whose each corner is in {−1,+1}d.

Figure 1: A 3-dimensional hypercube

We can define the following lazy walk on the hypercube, which gives us the Markov chain Mt:

At step (t+ 1):

1. We pick a random coordinate j.

2. We set the value of the j-th coordinate in Mt to 1 with probability 1/2 and to -1 with
probability 1/2, and this gives us Mt+1.

Remark 11. This Markov Chain is irreducible, aperiodic and uniform, therefore stationary.

To analyze the mixing time, we define the following coupling:

3

1. Xt: We pick coordinate i uniformly at random and set it randomly to v.

2. Yt: We pick coordinate i and set it to v (the same coordinate and value as Xt).

Example 12 (One possible step of this coupling).

X0 = (−1,−1,−1), Y0 = (1, 1, 1), i = 3, v = −1

X1 = (−1,−1,−1), Y1 = (1, 1,−1)

Observation 13. A coordinate that has become the same, will always remain the same.

Observation 14. The time taken to select every coordinate at least once is a coupon collector
problem with d coupons, which means that it takes on average d log d time to select all coordinates.
Therefore:

Y (ε) ≤ O(d log d+ d log(1/ε))

1.4 Shuffling n cards

We describe the following Markov chain to shuffle n cards:

1. We pick a random card (value = c).

2. We move the selected card to the top of deck.

Coupling: The coupling is done similar to the previous example, with the difference that now Xt

and Yt coordinate on the value of c instead of i and v, i.e., they both move the same card to the
top of deck at each step.

Observation 15. After picking c and moving it to the top of deck, it remains level in both chains.
We could again use the coupon collector argument, since we’re looking for the expected time required
to select every card at least once. Therefore:

Y (ε) ≤ O(n log(n/ε))

1.5 Independent sets of fixed size

Definition 16 (Independent Set). An independent set of size k is a subset of k vertices in a graph,
none of which are adjacent.

Example 17 (Figure 2). Independent Set of size 3

We describe a Markov chain to sample an independent set of size k. Xt denotes the vertices in the
independent set at step t. To reach Xt+1, we do as follows:

1. We choose v ∈ Xt and w ∈ V uniformly at random.

2. If w /∈ Xt and Xt − v + w is an independent set, Xt+1 = Xt − v + w, otherwise Xt+1 = Xt.

4

Figure 2: Independent set of size 3

Figure 3: Independent sets and a perfect matching M between them

We let n denote the number of vertices and ∆ the maximum degree of a vertex. If k ≤ n
3∆+3 , then

this Markov chain is rapidly mixing.

Coupling:

1. For chain X, we choose v ∈ Xt and w ∈ V at random, then make a move.

2. For chain Y , we look at the vertex v selected for X:

(a) If v ∈ Xt ∩ Yt: We use the same v and w and try to make a move. (May not be able to
make the same move in both X and Y)

(b) If v /∈ Xt ∩ Yt: We use M(v) and w and try to make a move. (M(v) denotes the perfect
matching between the vertices in Xt − (Xt ∩ Yt) and Yt − (Xt ∩ Yt))

Analysis: Let dt = |Xt − Yt| denote the Hamming distance between the two sets at step t. We
want dt to be equal to 0, which indicates that the to Markov chains reaching the same state.

Observation 18. dt+1 ∈ {dt − 1, dt, dt + 1}

5

Question 1. How can we have dt+1 = dt + 1? This can only happen if v ∈ Xt ∩ Yt, and w is
adjacent to Xt − Yt, but not Yt −Xt (or vice versa).

In these cases w is a vertex or neighbor of (Xt − Yt) ∪ (Yt −Xt), therefore:

Pr[dt+1 = dt + 1|dt > 0] ≤
(
k − dt
k

)(
2dt(∆ + 1)

n

)
Here, the first term relates to picking v in the intersection, and the second term to selecting w.

Question 2. How can we have dt+1 = dt − 1? This can only happen if v /∈ Yt and w is neither
adjacent to or equal to a vertex in Xt ∪ Yt − {v,M(v)}.

Therefore:

Pr[dt+1 = dt − 1|dt > 0] ≥
(
dt
k

)(
n− (k + dt − 2)(∆ + 1)

n

)
Thus:

E[dt+1|dt] = Pr[dt+1 = dt + 1](dt + 1) + Pr[dt+1 = dt − 1](dt − 1) + Pr[dt+1 = dt]dt

≤ dt +

(
k − dt
k

)(
2dt(∆ + 1)

n

)
−
(
dt
k

)(
n− (k + dt − 2)(∆ + 1)

n

)
= dt

(
1− n− (3k − dt − 2)(∆ + 1)

kn

)
≤ dt

(
1− n− (3k − 3)(∆ + 1)

kn

)
Now we use induction on t:

E[dt] ≤ d0

(
1− n− (3k − 3)(∆ + 1)

kn

)k
, d0 < k,

Pr[dt ≥ 1] ≤ E[dt]

≤ k
(

1− n− (3k − 3)(∆ + 1)

kn

)t
≤ k exp

(
−t(n− (3k − 3)(∆ + 1))

kn

)
⇒

Pr[dt ≥ 1]→ 0

Therefore:

Y (ε) ≤ kn ln(k/ε)

n− (3k − 3)(∆ + 1)

2 Monte Carlo

2.1 Estimating value of π

Assume we want to estimate the value of π using Monte Carlo techniques. We start by drawing
uniformly random samples from the square in Figure 4 and count the number of samples inside the
circle.

6

Figure 4

We note that the area of the square and circle are 4 and πr2 = π respectively. Therefore, the
probability of one of the points being inside the circle is π

4 and E[Fraction of points in the circle] =
π
4 . If w samples out of the m samples fall inside the circle, 4mw could be used as an estimate for the
value of π.

Theorem 19. Let X1, . . . , Xm be i.i.d. Bernoulli random variables, E[Xi] = µ. If m ≥ 3 ln(2/δ)
ε2µ

:

Pr

[∣∣∣∣ 1

m

∑
Xi − µ

∣∣∣∣ ≥ εµ] ≤ δ
Definition 20. A random algorithm gives an (ε, δ)-approximation for V if output X is:

Pr[|X − V | ≤ εV] ≥ 1− δ

Definition 21. A fully polynomial randomized approximate scheme (FPRAS) is a random algo-
rithm if given x as input and 0 < ε < 1, outputs an (ε, 1

4)-approx to V (x) in time poly(1
ε , size of x).

2.2 DNF Counting

We start by recalling that CNF (Conjunctive Normal Form) is a canonical normal form of a logical
formula consisting of a conjunction of disjunctions. Conversely, DNF (Disjunctive Normal Form)
is another canonical normal form which consists of a disjunction of conjunctions.

Example 22 (CNF). (X1 ∨X2 ∨X3) ∧ (X1 ∨X2 ∨X3)

Example 23 (DNF). (Y1 ∧ Y2 ∧ Y4) ∨ (Y3 ∧ Y4 ∧ Y1)

Remark 24. Counting the number of satisfying assignments in a DNF problem is #P hard.

We can design a (ε, δ)-approx algorithm with running time Ω
(

ln(1/δ)
ε2µ

)
by sampling variable assign-

ments uniformly at random. However, a question arises regarding this approach:

Question 3. What if µ is small? For O(n2) satisfying assignments, µ = n2

2n which makes the
number of required samples exponentially large.

7

To overcome this problem, we assume F = C1 ∨ C2 ∨ · · · ∨ Cm. Let SCi be set of satisfying
assignments of clause i. We have |SCi| = 2n−li , where li = number of literals in clause i. We want
to approximate |

⋃
SCi|.

Let u = {(i, a)|1 ≤ i ≤ m, a ∈ SCi}. Therefore: |u| =
∑m

i=1 |SCi|.

S = {(i, a)|1 ≤ i ≤ m, a ∈ SCi, but a /∈ SCj for j < i}.

We sample from u and check if the element is in S. This gives an approximation for |S||u|

This is a good estimate (polynomial queries) if |S||u| is large (|S||u| ≥
1
m). O(m log(1/δ)/ε2) samples

suffice.

Question 4. How to sample from u?

1. We pick clause i with probability |SCi|/
∑m

j=1 |SCj |.

2. We pick random satisfying assignment in SCi.

Pr[(i, a) is chosen] = Pr[i is chosen] · Pr[a is chosen]

=
|SCi|
|u|

· 1

|SCi|

=
1

|u|

2.3 Percolation

Let G be a graph and suppose each edge in G is removed with probability p.

Question 5. What is the probability that the graph is still connected?

We define FAIL(p) as the probability that the graph is disconnected after removing each edge with
probability p.

Lemma 25. The graph is disconnected, if and only if there exists a cut in the initial graph which
all of its edges have failed.

Define c as the min-cut size. We divide the proof to two cases:

1. If pc ≥ n−4: In this case FAIL(p) ≥ n−4 and therefore we can use a O
(
n4 log(1/δ)

ε2

)
-approx

simple sampling algorithm.

2. If pc < n−4: We ignore the “big” cuts and enumerate all the “small” cuts.

Claim 26. An undirected graph has O(n2α) cuts with ≤ αc edges.

8

We can enumerate all of these small cuts in Õ(n2α · T − cont) time, where T − cont is the
running time of the contraction algorithm.

To ignore the big cuts, we need to upper bound the probability of any one of them failing.
Let pc = n−(2+k) for some k > 2. We have:

Pr[Some cut with ≥ αc edges fails] ≤
∫
β≥α

O(n2β)pβc dβ

≤
∫
β≥α

n−kβ dβ

≤ O(n−kα)

By setting α = 2t ln(ε/O(1))
k lnn we get:

O(n−kα) ≤ n−2kε ≤ ε · FAIL(p)

2.3.1 Reduction to DNF for small cuts

(a) We define variable x for every edge e.

(b) For each small cut, we make a clause. For example:

(xe1 ∧ xe2 ∧ · · · ∧ xek) ∨ . . .

Now, we set p as the probability of each variable being satisfied, which is the difference from
the regular DNF counting problem.

References

[1] Peter Matthews. Covering problems for brownian motion on spheres. Ann.
Probab., 16(1):189–199, 01 1988. doi: 10.1214/aop/1176991894. URL
https://doi.org/10.1214/aop/1176991894.

[2] Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–
17:24, September 2008. ISSN 0004-5411. doi: 10.1145/1391289.1391291. URL
http://doi.acm.org/10.1145/1391289.1391291.

9

