
CS 761: Randomized Algorithms Fall 2019

Problem Set 1

Prof. Gautam Kamath Deadline: 11:59 PM on October 7, 2019

You are allowed to discuss the problems in small groups (2-4 people). List your collaborators for
each problem. Every person must write up and submit their own solutions.

1. Boosting Success Probability. Suppose that we have an algorithm A, which takes a
dataset X(1) ∼ D and outputs a real number with the following guarantee, with respect to
some (unknown) value p:

Pr[|A(X(1))− p| ≤ ε] ≥ 3/4.

That is, the algorithm is “accurate” with probability at least 3/4, where the probability is
over the sampling of X(1) ∼ D and the randomness in the algorithm A. Using this algorithm
as a black box, give an algorithm A′ which boosts this success probability to 1 − δ using
O(log(1/δ)) independent repetitions of the algorithm.

Pr[|A′(X(1), . . . , X(O(log(1/δ))))− p| ≤ ε] ≥ 1− δ.

Assume that we can draw O(log(1/δ)) additional (independent) datasets from D.

This technique is useful when we may have a learning/estimation algorithm which is correct
with probability strictly greater than 1/2, and we wish to boost the success probability to be
arbitrarily high.

Optional: Extend your to the vector-valued setting. Suppose that the output of A and p
are d-dimensional vectors, and we have the following guarantee:

Pr[‖A(X(1))− p‖2 ≤ ε] ≥ 3/4.

Use this to design an algorithm A′ which takes O(log(1/δ)) independent datasets from D and
has the following guarantees:

Pr[‖A′(X(1), . . . , X(O(log(1/δ))))− p‖2 ≤ 2ε] ≥ 1− δ.

Note that we allow an additional factor of 2 in the approximation guarantee.

2. High-Probability Quicksort. In class, we proved that the expected running time of ran-
domized Quicksort is O(n log n). Prove that the running time of randomized Quicksort is
O(n log n) with probability at least 1− 1/n.

3. Sequential Selection. You are on a game show with the following rules. There will be n
time steps, and at the ith time step, the following occurs. You will be offered a dollar amount
vi. You can choose either to accept the prize vi and the game ends, or irrevocably reject the
prize and the game continues to time step i+ 1. Assume that the values are all unique, and
are presented in a uniformly random order.

One could play this game using the following strategy. Reject the first m dollar amounts
v1, . . . , vm. After the mth time step, accept the first value vi which is greater than all the
previously seen values.

1

Let E be the event that you accept the largest prize. Let Ei be the event that the ith
prize is the largest one and that you accept it. Compute Pr(Ei) and show that Pr(E) =
m
n

∑n
i=m+1

1
i−1 . Show that, with an appropriate choice of m, this probability can get arbi-

trarily close to 1/e.

4. Chernoff Bound. Let X be a standard normal random variable, with probability density
function f(x) = 1√

2π
exp

(
−1

2x
2
)
.

(a) Compute the moment generating function of X2, MX2(t) = E
[
exp

(
tX2

)]
. You may

use the fact that
∫∞
−∞ f(x)dx = 1.

(b) Compute E[X4], potentially using your result from the previous part.

(c) Let X1, . . . , Xn be independent standard normal random variables, and Z = 1
n

∑n
i=1X

2
i .

Use the Chernoff method to prove that Pr(Z ≥ 1 + ε) ≤ exp
(
−nε2/8

)
for 0 ≤ ε ≤ 1.

You may use the Taylor expansion ln(1− x) = −
∑∞

i=1 x
i/i for −1 ≤ x ≤ 1.

5. s-t min-cut. Consider the s-t min-cut problem, in which we are given an undirected graph
G, where two vertices s and t are specified. An s-t min-cut is a set of edges (of minimum
cardinality) whose removal disconnects s from t. We try solving this problem using the
contraction algorithm. As the algorithm proceeds, if s (respectively t) get merged with
another node, the resulting merged node becomes s (respectively t). We make sure to never
contract an edge between s and t.

(a) Show that there are simple graphs (i.e., not multi-graphs) in which the probability that
this algorithm finds an s-t min-cut is exponentially small.

(b) Asymptotically, how many s-t min-cuts can an instance of the s-t min-cut problem have?

6. Second min-cut. Consider the problem of finding the second smallest cut in a graph. This
may be equal to the min-cut, if there are two min cuts, or it might be much larger. Show that
a modification to a single run of the contraction algorithm as an Ω(1/n2) chance of finding
the second smallest cut.

7. Balls and bins in rounds. Suppose we have n jobs and n machines. Each machine can
process 1 job at each time step. At time 0, we assign the n jobs uniformly at random to the
n machines. If this is all we do, we know from class that it will take Θ(log n/ log logn) time
steps until all jobs are processed. Instead, at each time step, we will assign all incomplete
jobs uniformly at random to the n machines.

(a) Argue that if αn jobs begin a round, then with high probability only (α2/1.9)n will not
be processed. Hint: consider assigning the jobs one at a time, and upper bound the
probability that a job is assigned to a machine that already has a job.

(b) Conclude that choosing new machine for each round means that all jobs will be processed
in O(log log n) time with high probability.

8. Set difference using Bloom Filter. Suppose you have two sets, X and Y , such that
|X| = |Y | = m and |X ∩ Y | = r. Create a Bloom filter using a table of size n for each of X
and Y , both using the same set of k hash functions.

(a) Determine the expected number of bits where the two Bloom filters differ, as a function
of m,n, k, and r.

(b) Show how this can be used as a method for estimating r.

2

