CS 761: Randomized Algorithms Fall 2019

Problem Set 1
Prof. Gautam Kamath Deadline: 11:59 PM on October 7, 2019

You are allowed to discuss the problems in small groups (2-4 people). List your collaborators for
each problem. Every person must write up and submit their own solutions.

1. Boosting Success Probability. Suppose that we have an algorithm A, which takes a
dataset XM ~ D and outputs a real number with the following guarantee, with respect to
some (unknown) value p:

Pr{|A(XW) —p| <] > 3/4.

That is, the algorithm is “accurate” with probability at least 3/4, where the probability is
over the sampling of X(!) ~ D and the randomness in the algorithm A. Using this algorithm
as a black box, give an algorithm A’ which boosts this success probability to 1 — ¢ using
O(log(1/4)) independent repetitions of the algorithm.

Pr[|A/(xW), ... x©OUs(/O))y _pl <] >1 -4

Assume that we can draw O(log(1/d)) additional (independent) datasets from D.

This technique is useful when we may have a learning/estimation algorithm which is correct
with probability strictly greater than 1/2, and we wish to boost the success probability to be
arbitrarily high.

Optional: Extend your to the vector-valued setting. Suppose that the output of A and p
are d-dimensional vectors, and we have the following guarantee:

Pr[J A(XD) = plls < ¢] = 3/4.

Use this to design an algorithm A’ which takes O(log(1/§)) independent datasets from D and
has the following guarantees:

Pr{|A'(xW, ..., x(©Us/O)) _ py < 2¢] > 1 -4
Note that we allow an additional factor of 2 in the approximation guarantee.

2. High-Probability Quicksort. In class, we proved that the expected running time of ran-
domized Quicksort is O(nlogn). Prove that the running time of randomized Quicksort is
O(nlogn) with probability at least 1 — 1/n.

3. Sequential Selection. You are on a game show with the following rules. There will be n
time steps, and at the ith time step, the following occurs. You will be offered a dollar amount
v;. You can choose either to accept the prize v; and the game ends, or irrevocably reject the
prize and the game continues to time step ¢ + 1. Assume that the values are all unique, and
are presented in a uniformly random order.

One could play this game using the following strategy. Reject the first m dollar amounts
V1,...,Um. After the mth time step, accept the first value v; which is greater than all the
previously seen values.



Let E be the event that you accept the largest prize. Let F; be the event that the ith
prize is the largest one and that you accept it. Compute Pr(E;) and show that Pr(E) =
o S 41 Z_% Show that, with an appropriate choice of m, this probability can get arbi-
trarily close to 1/e.

. Chernoff Bound. Let X be a standard normal random variable, with probability density

function f(z) = \/% exp (—32?%).

(a) Compute the moment generating function of X2, My2(t) = E [exp (tX?)]. You may
use the fact that [ f(z)dx = 1.

(b) Compute E[X?], potentially using your result from the previous part.

(c) Let X1,..., X, be independent standard normal random variables, and Z = 2 3% | X2.
Use the Chernoff method to prove that Pr(Z > 1+ ¢) < exp (—TL€2/8) for 0 < e < 1.
You may use the Taylor expansion In(1 —z) = —> 32, 2'/i for —1 <z < 1.

. s-t min-cut. Consider the s-t min-cut problem, in which we are given an undirected graph
G, where two vertices s and ¢ are specified. An s-t min-cut is a set of edges (of minimum
cardinality) whose removal disconnects s from t. We try solving this problem using the
contraction algorithm. As the algorithm proceeds, if s (respectively t) get merged with
another node, the resulting merged node becomes s (respectively t). We make sure to never
contract an edge between s and ¢.

(a) Show that there are simple graphs (i.e., not multi-graphs) in which the probability that
this algorithm finds an s-f min-cut is exponentially small.

(b) Asymptotically, how many s-t min-cuts can an instance of the s-t min-cut problem have?

. Second min-cut. Consider the problem of finding the second smallest cut in a graph. This
may be equal to the min-cut, if there are two min cuts, or it might be much larger. Show that
a modification to a single run of the contraction algorithm as an €(1/n?) chance of finding
the second smallest cut.

. Balls and bins in rounds. Suppose we have n jobs and n machines. Each machine can
process 1 job at each time step. At time 0, we assign the n jobs uniformly at random to the
n machines. If this is all we do, we know from class that it will take ©(logn/loglogn) time
steps until all jobs are processed. Instead, at each time step, we will assign all incomplete
jobs uniformly at random to the n machines.

(a) Argue that if an jobs begin a round, then with high probability only («?/1.9)n will not
be processed. Hint: consider assigning the jobs one at a time, and upper bound the
probability that a job is assigned to a machine that already has a job.

(b) Conclude that choosing new machine for each round means that all jobs will be processed
in O(loglogn) time with high probability.

. Set difference using Bloom Filter. Suppose you have two sets, X and Y, such that
|X|=1Y|=m and | X NY| =r. Create a Bloom filter using a table of size n for each of X
and Y, both using the same set of k£ hash functions.

(a) Determine the expected number of bits where the two Bloom filters differ, as a function
of m,n, k, and r.

(b) Show how this can be used as a method for estimating .



