
CS 761: Randomized Algorithms Fall 2019

Problem Set 2

Prof. Gautam Kamath Deadline: 11:59 PM on November 3, 2019

You are allowed to discuss the problems in small groups (2-4 people). List your collaborators for
each problem. Every person must write up and submit their own solutions.

1. Sampling With and Without Replacement. Suppose we are given a set of k items
sampled uniformly at random without replacement, from an unknown set of size n, where n
is known. Show how to use this to construct a set of k items sampled uniformly at random
with replacement from the same (unknown) set.

2. k-wise Hash Function Families. This problem is due to Eric Price. Consider a strongly
k-universal family of hash functions H from [m] to [n], where k = O(1). For a set of items
S ⊂ [m], let X be the random variable which is the load in the first bin, X = |{i ∈ S | h(i) =
1}|, where the randomness is over the uniform selection of h from H.

(a) For any t ≥ 1 and set S with |S| = n, show that Pr[X ≥ t] ≤ O(1) · 1/tk. Hint: Bound
E[Xk].

(b) Use the previous part to show that, in the same setting, the expected maximum load of
any bin is ≤ O(1) · n1/k.

(c) Based on these results, what value of k would you predict is needed to attain a max
load of O(log n/ log log n), as in the ideal case? Note that this is not formal, since we
assumed k = O(1), but should give you roughly the right answer.

(d) (Optional) In the special case where m = n and S = [n], show that there exists a
universal hash family H such that the expected maximum load is Ω(

√
n).

3. Python Hashing is Broken. This problem is due to Eric Price. The Python programming
language uses hash tables (or “dictionaries”) internally in many places. Until 2012, however,
the hash function was not randomized: keys that collided in one Python program would do
so for every other program. To avoid denial of service attacks, Python implemented hash
randomization – but there was an issue with the initial implementation. Also, in Python 2,
hash randomization is still not the default: one must enable it with the -R flag.

(a) First, lets look at the behavior of hash("a")-hash("b") over n = 2000 different initial-
izations. If hash were pairwise independent over the range (64-bit integers, on a 64-bit
machine), how many times should we see the same value appear?

(b) How many times do we see the same value appear, for three different instantiations of
python: (I) no randomization (python2), (II) Python 2’s hash randomization (python2
-R), and (III) Python 3’s hash randomization (python3)? If you have trouble coding
this on your own, the following snippet lets you get the answer:

for i in `seq 1 2000`; do

python2 -R -c 'print((hash("a")-hash("b")))';

done | sort | uniq -c | awk '{print $1}' | sort -n | uniq -c

1

(c) What might be going on here? Roughly how many different hash functions does this
suggest that each version has?

(d) The above suggests that Python 2’s hash randomization is broken, but does not yet
demonstrate a practical issue. Lets show that large collision probabilities happen. Ob-
serve that the strings “8177111679642921702” and “6826764379386829346” hash to the
same value in non-randomized python 2. Check how often those two keys hash to the
same value under python2 -R. What fraction of runs do they collide? Run it enough
times to estimate the fraction to within 20% multiplicative error, with good probability.
How could an attacker use this behavior to denial of service attack a website?

(e) (Optional) Find other pairs of inputs that collide.

4. Count-min sketch with Tug-of-War. In this problem, we will combine ideas from Count-
min sketch for finding heavy-hitters with the Alon-Matias-Szegedy algorithm for estimating
the `2 frequency moment of a stream. This will allow us to estimate heavy hitters of a stream
with a tighter guarantee in certain cases.

Recall that in Count-Min Sketch, we maintained d hash functions h1, . . . , hd, corresponding
to d hash tables, each of size w. For the datum that appears at time t, (it, ct) where it is
the identifier, and ct is a count, for each j ∈ [d], we increment a counter Cj in entry hj(it)
of the jth hash table by ct. At the end of the stream, for a given identifier i, we can return
f̂i = minj∈[d]Cj(hj(i)) to get an estimate of fi =

∑
t:it=i

ct. In particular, setting w = O(1/ε)

and d = O(log(1/δ)), with probability at least 1− δ, this will give an estimate |f̂i− fi| ≤ εF1,
where F1 =

∑
i fi (we assume that fi ≥ 0 for all i).

Consider making the following changes to the algorithm. Instead of storing just d hash
functions, we instead store 2d hash functions. The second set of hash functions, g1, . . . , gd
maps to the range {±1}. The modification to counter Cj at time t is still at entry hj(it), but

now we increment it by gj(it)ct. Finally, our estimate f̂i is now medianj∈[d] gj(i)Cj(hj(i)). We

will obtain a guarantee which is in terms of
√
F2, where F2 =

∑
i f

2
i . Let f̂ij = gj(i)Cj(hj(i)).

(a) For some given i and j, compute E[f̂ij].

(b) For some given i and j, upper bound V ar[f̂ij].

(c) Given these two quantities, choose values of d and w, upper-bounding the probability
that |f̂ij − fi| ≥ ε

√
F2 by a constant, and (in turn) upper-bounding the probability that

|f̂i − fi| ≥ ε
√
F2 by δ.

(d) Compare this type of guarantee with that of Count-Min Sketch. When is each guarantee
better? Give a set of frequencies (i.e., a set of fi’s) illustrating where one might be better
than the other.

5. `1-dimension reduction. This problem is due to Ilya Razenshteyn. In class, we explored
dimension reduction in `2. We will now consider dimension reduction in `1. While the
natural adaptation of Johnson-Lindenstrauss does not work, we will consider an alternative
via sketching.

Consider the following map f(x) for x ∈ Rd. Define the vector yi = xi/ui, where the ui’s
are chosen as i.i.d. random variables from the exponential distribution Exp(1), where Exp(λ)
has density function p(t) = λe−λt. The sketch f(x) is the algorithm in the previous problem
(“Count-min sketch with Tug-of-War”) applied to the vector y (we will set the parameters w
and d in the steps of this problem).

2

The estimator uses said algorithm to extract the heavy hitters of y and outputs the largest
one (in absolute value). Note that the resulting sketch is linear: specifically, to estimate
‖x− x′‖1 given sketches f(x) and f(x′), it suffices to run the estimator on f(x)− f(x′).

(a) Let X1, . . . , Xn be independent samples from Exp(λ1), . . . Exp(λn), respectively. Show
that min{X1, . . . , Xn} is distributed as Exp(λ1 + · · ·+ λn).

(b) Prove that the largest (absolute value of a) coordinate of y, termed q, is within a constant
factor of

∑d
i=1 |xi|, with probability at least 0.95.

(c) Prove that q is a φ-heavy hitter (in the vector y) with probability at least 0.9, where
φ = c/ log d for some small positive constant c > 0. In this context, we say an element
q is a φ-heavy hitter if q ≥ φ‖y‖1.
Hint: Prove that all ui ≥ 1/(λd2) with probability 1 − Ω(1/d). Conditioned on that,
prove a convenient bound on the expectation of ‖y‖1 and use Markov’s inequality.

Another hint: You may use the fact that exponential random variables are memoryless,
without proof. Namely, if X ∼ Exp(λ), Pr(X > s + t|X > s) = Pr(X > t) for all
s, t ≥ 0. Optionally, you may prove this as well.

Yet another hint: I recommend not looking at this hint until you find yourself wondering
how to further simplify an unfamiliar mathematical expression – it is far more satisfying
if you arrive at that point yourself. Regardless, it’s here.

(d) Prove that, for φ from part c) with constant c sufficiently small, the estimator is a
constant factor approximation to

∑
|xi| with probability at least 0.6.

(e) Conclude that the space of the overall `1 sketch is O(logO(1) d).

(f) (Optional) Instead of a constant-factor approximation, show how to modify the algorithm
to obtain a (1± ε) approximation at a small increase in the amount of space.

6. A Game of Coins. Suppose two people are playing the following game, which starts with
k coins on the number 0, and the game is played on the number line {0, 1, . . . , n}. On Player
1’s turn, they select two disjoint subsets of the coins A and B (note that A∪B does not need
to contain all the coins). On Player 2’s turn, they remove all the coins from either A or B,
while the coins in the other set move one space forward to the next number. Player 1 wins if
a coin reaches n. Player 2 wins if there is only one coin remaining, that has not reached n.

(a) Construct a winning strategy for Player 1 if k ≥ 2n.

(b) Show that there exists a winning strategy for Player 2 using the probabilistic method if
k < 2n.

(c) “Derandomize” your argument for the previous part to give a (deterministic) winning
strategy for Player 2 if k < 2n.

7. Graph Colouring. We are given a graph G = (V,E), along with a set Cv of 8r colours for
each v ∈ V and r is a positive integer. There are at most r neighbors u of v containing colour
c, for any node v ∈ V and colour c ∈ Cv. Recall that a proper colouring of graph requires
that every two nodes connected by an edge are distinct colours. Show that such a colouring
exists.

3

https://i.imgur.com/ttdVQwW.png

