CS 860: Algorithms for Private Data Analysis Fall 2020

Lecture 1 — Some Attempts at Data Privacy
Prof. Gautam Kamath Scribe: Gautam Kamath

This course will be largely focused on private data analysis, under the definition of differential
privacy. But before we get to that, let’s talk a bit about a few failures in data privacy, and why we
need rigorous notions of privacy to ensure we don’t leak sensitive information.

NYC Taxicab Data

Back in 2014, the NYC Taxi & Limo Commission was quite active on Twitter, sharing visualizations
of a number of taxi usage statistics. This quickly caught the eye of several Internet users, who
inquired about the source of this data. The Taxi & Limo Commission replied that this data is
available, but one must file a Freedom of Information Law (FOIL) request. Freedom of Information
laws allow for citizens to request data from certain government organizations. In the US, this
is governed at the federal level by the Freedom of Information Act (FOIA). In Canada, similar
laws exist, including the Freedom of Information and Protection of Privacy Act (FIPPA) and the
Municipal Freedom of Information and Protection of Privacy Act (MFIPPA) Act. Chris Whong
filed a FOIL request and released the dataset publicly online [Whol4]. He also documented his
experiences filing the request, which is an amusing read, but not our focus today.

The dataset he obtained consists of all taxi fares and trips in NYC during 2013 — a total of 19 GB
worth of data. This should immediately set off some alarm bells: indeed, if this dataset identifies
which drivers are giving these rides, then we would have information about the location and income
of every taxi driver in New York City! This is information we generally consider to be sensitive,
and a taxi driver might prefer to keep private. As you might expect, the Commission attempted
to obscure this information, using a form of anonymization.

A typical row in the trips dataset looks like the following:

6B111958A39B24140C973B262EA9FEA5S ,D3BO35A03C8A34DA17488129DA581EE7 ,VTS,5,,2013-12-03
15:46:00,2013-12-03 16:47:00,1,3660,22.71,-73.813927,40.698135,-74.093307,40.829346

These fields are:

medallion, hack_license, vendor_id, rate_code, store_and_fwd flag, pickup_datetime,
dropoff_datetime, passenger_count, trip_time_in secs, trip._distance, pickup_-longitude,
pickup_latitude, dropoff_longitude, dropoff_latitude

While most of these fields are rather self-explanatory, such as the time and location fields, the first
two are of primary interest to us. In particular, they indicate a taxi driver’s medallion and license
number. However, the standard format for these fields is rather different than what is provided —
it appears that the dataset has been somehow anonymized, to mask these values.

Upon inspection, Jason Hall posted on Reddit [Hall4] that someone with the medallion number
CFCD208495D565EF66E7DFFIF98764DA had a number of unusually profitable days, making much
more than a taxi driver could hope to make. Vijay Pandurangan dug a bit deeper on this, and

made the following discovery[Pan14]:

gautam@gautam-ThinkPad-P51:"$ echo -n 0 | md5sum
cfcd208495d565ef66e7df£9f98764da -

This demonstrates that taking the MD5 hash of the string “0” gives the identifier mentioned
above. Pandurangan hypothesized that this identifier corresponded to instances when the medallion
number wasn’t available, but he took this as a hint: all the medallion and license numbers were
simply the plaintext hashed via MD5. As both these identifiers are only a few characters long, he
was able to compute the MDb5 hashes of all possibilities and obtain the pre-hashing values for the
entire dataset. Using other publicly available data, he was further able to match these with driver
names, thus matching real-life identities with incomes and locations: a massive privacy violation!

One might immediately think of some ways to avoid this issue. For instance, rather than hashing
the true medallion and license numbers, why not make up entirely new and arbitrary identifiers?
However, this is still susceptible to privacy violations: suppose you took a ride with a driver, and
noted down the time and location of your trip. Then by referencing the data afterwards, you can
discover the driver’s identifiers and thus their income and location history.

This type of attack using side-information goes beyond revealing information about only the drivers.
Suppose a co-worker says they’re going home after work — as you wave them goodbye, you record
the pickup time and location. If you later reference the dataset with this information, you can
discover their home address (as well as whether they’re a generous tipper or not).

The bottom line: privacy is hard. And we’re about to see a whole bunch of other examples.

The Netflix Prize

Another case study of data anonymization gone wrong is the Netflix Prize competition. Netflix is
a very data-driven and statistically-minded company: many of their hit TV shows are conceived
based on user data, and their fabled recommendation algorithm is tuned to optimize user engage-
ment. Between 2006 and 2009, they hosted a contest, challenging researchers to improve their
recommendation engine. The grand prize was a highly-publicized US$1,000,000, claimed by a team
named BellKor’s Pragmatic Chaos, based on matrix factorization techniques.

In order to help teams design their strategies, Netflix provided a training dataset of user data.
Each datapoint consisted of an (anonymized) user ID, movie ID, rating, and date. Netflix assured
users that the data was appropriately de-anonymized to protect individual privacy. Indeed, the
Video Privacy Protection Act of 1988 requires them to do this. One’s media consumption history is
generally considered to be sensitive or private information, as one might consume media associated
with certain minority groups (including of a political or sexual nature).

Unfortunately, Narayanan and Shmatikov demonstrated that this naive form of anonymization was
insufficient to preserve user privacy[NS08]. Their approach is illustrated in Figure 1. They took
the dataset provided by Netflix, and cross-referenced it with public information from the online
movie database IMDb, which contains hundreds of millions of movie reviews. In particular, they
tried to match users between the two datasets by finding users who gave similar ratings to a movie
at similar times. While the Netflix data was de-identified, the IMDb data was not, and a review

& P S & Alice
& N Bob
2 |&|d | & &y | Charlie

Danielle

o |99 & Erica

P & Frank

&
B
v
<3

Anonymized Public, incomplete
NetFlix data IMDB data
2N Alice
& Bob
21 & Charlie

|
&

& Danielle

& 9\ Erica
A Frank

Identified NetFlix Data

Image credit: Arvind Narayanan

Figure 1: Figure due to Arvind Narayanan, illustrating the attack in [NSO8].

was associated with either the user’s name or an online pseudonym. It turns out this approach
was sufficient to re-identify many users from only a few weak matches, thus giving information on
these users’ movie watching history, which they chose not to reveal publicly. This discovery led to
a class action lawsuit being filed against Netflix, and the cancellation of a sequel competition.

Once again, this example shows that de-anonymization is insufficient to guarantee privacy, especially
in the presence of side-information.

Memorization in Neural Networks

So far, we’ve been focused on cases which output an entire dataset, which seem to be challenging
to appropriately privatize. What if we instead are releasing some function or model of the dataset?
As it only gives a restricted view of the dataset, perhaps this prevents it from revealing private
information? Unfortunately, once again this is not the case.

We discuss an investigation of Carlini et al. [CLET19]. Consider training a neural network model on
a text corpus Y (potentially containing sensitive information), and creating a generative sequence
model fy. Given a sequence z1,...,T,, the model is able to compute

n

P@(xla s 7$n) = _10g2 PI'($1, s ’xn‘fe) = Z (_ 10g2 Pr(xi‘fe(xla s ,$i_1))) :

i=1

This quantity Py is known as the log-perplexity of the sequence. By inspecting the expression, it
can be seen that a low perplexity indicates that the sequence is assigned a high probability by the

model, and a high perplexity indicates that the sequence is assigned a low probability by the model.
For instance, a well-trained language model is likely to assign a low perplexity score to a phrase
like “Mary had a little lamb,” but a high perplexity score to “correct horse battery staple.”

The question is, what if “correct horse battery stapler” were in the training data? Would this lead
to it having a low perplexity, thus signalling that this is the case? You might think that this is not
a big deal (unless this is someone’s password) — but what if instead, the phrase “my social security
number is 078-05-1120" were assigned a low perplexity? This might reveal the SSN of an individual
in the training data. There are two core questions here:

bAAN1Y

1. Do neural networks “memorize” “secrets” in the training data?

2. If so, is it possible to efficiently discover these secrets?

Carlini et al. [CLE*19] investigate these questions with the following experimental setup. They
add a “canary”! to the training data, which is a sensitive phrase of a particular format — we will
use the example “my social security number is 078-05-1120”. The question is whether this inclusion
significantly lowers the perplexity in comparison to other semantically similar phrases, such as “my
social security number is 867-53-0900.” If so, that is an indication that the particular canary has
been memorized, and may be extractable from the final model. Note that on large datasets, the
canary may have to be added many times before the perplexity becomes low enough to be noticed.

Let us be a bit more quantitative: suppose we have a set of phrases R. For the present example,

each 7 is a digit. Imagine sorting all of these phrases in increasing order of log-perplexity according
to some model fy: the rank of the canary is its index in this list. A random element of R would
fall somewhere in the middle of the list. On the other hand, elements at the top of the list are the
best candidate secrets — we consider these to be more “exposed.” With this mindset, the exposure
of some secret r € R is logy |R| — logy rank(r). This value ranges from 0 to log, |R|, where a large
exposure corresponds to the secret being more noticeable. In particular, an exposure of log, |R|
indicates that the secret would have the lowest log-perplexity of phrases in this list.

On the bright side, it seems like extremely large models are not prone to exposing secrets in this
sense. In Figure 2, the results of an experiment on Google’s Smart Compose are displayed. Smart
Compose is an automatic sentence completion algorithm employed in Gmail, and is trained on
billions of word sequences. Even when the canary is inserted thousands of times, the exposure
remains comparatively low — |R| used in this experiment is on the order of 10'2, so an exposure of
> 40 is needed for extraction, whereas it only reaches values of 10 after 10,000 insertions. On the
other hand, Figure 3 illustrates a much smaller example, with a training dataset of size roughly
100, 000, and using the social security number example given above. As we can see, with only four
insertions of the canary, its exposure passes log, 10%, at which point it can easily be extracted.

In the paper, the authors also give efficient methods of extracting exposed secrets. Naively, one
would have to try all possible sets of phrases and determine their perplexity. A more efficient
approach is possible using a Dijkstra’s algorithm style method.

Finally, the authors discuss how to mitigate such memorization and exposure. Interestingly, stan-
dard techniques to avoid overfitting in machine learning are ineffective, including dropout and
regularization. Differential privacy appears to be the only effective approach.

LA reference to the concept of a canary in a coal mine.

Exposure

—— Length-5 Sequence
—— Length-7 Sequence

T T T T T
0 2000 4000 6000 8000 10000
Number of Insertions

Figure 2: Figure from [CLET19]. Even with 10000 insertions, the canary has relatively low exposure
in the Google Smart Compose model.

Genomic Studies

A common setting for statistical data analysis is medical or genomic studies. While these are clearly
important for scientific progress, equally important is the need for data privacy. Indeed, suppose
there was a study involving only individuals who were HIV positive. If one could identify individuals
who participated in this study, then this would correspond to a gross violation of their privacy.
Troublingly, as Homer et al. demonstrated [HSRT08], under certain conditions, one could determine
whether or not an individual was present in a mixture of DNA samples based on certain aggregate
statistics. While others in the community argued that these conditions were not generally met in
practice [BRST09], nonetheless, this finding was taken quite seriously. The National Institutes of
Health (NIH) in the US immediately removed several summary statistics which were previously
open-source, including minor allele frequencies, chi-squared statistics, and p-values. Access to this
data is now subject to an approval process, acting as a barrier to open science. Thus, privacy-
respecting analyses would be a significant boon in enabling progress in this area, specifically for
problems such as statistical hypothesis testing.

Massachusetts Group Insurance Commission

At some point in the mid-1990’s, the Massachusetts Group Insurance Commission began a program
where researchers could request hospital visit records for every state employee, at no cost. Naturally,
this information is highly sensitive, so the dataset was anonymized. Massachusetts governor at the
time (and 2020 Republican presidential candidate) William Weld promised that patient privacy
was protected. If you’ve been paying attention, you might see where this is going.

w
o
1

M
o
1

Exposure

[
o
1

0 5 10 15
Number of Insertions

Figure 3: Figure from [CLET19]. In a smaller example, the canary has very high exposure (and is
recoverable) with only a few insertions.

Specifically, while the original dataset included information such as an individual’s name, SSN, ZIP
code, date of birth, sex, and condition, this was anonymized by removing identifying features such
as the individual’s name and SSN. Latanya Sweeney, then a graduate student in Computer Science,
bought the voter rolls from the city of Cambridge, which were then available for $20. These records
contained every registered voter’s name, address, ZIP code, date of birth, and sex. It turns out
that 87% of the United States is uniquely identified based on their ZIP code, sex, and date of birth.
Thus, by cross-referencing these two datasets, it is easy to perform large-scale reidentification of
individuals in the hospital visit dataset. Sweeney made a point about this, by sending Governor
Weld his own medical records.

k-anonymity

In order to mitigate issues such as the above, Samarati and Sweeney introduced a notion of data
privacy, known as k-anonymity [SS98]. Suppose that each point in the dataset has a set of different
features. Some of these are identifiers, such as name and SSN. These would be removed from the
dataset entirely. Other features are non-sensitive pseudo-identifiers: these are the features which
could be associated with a person’s identity. In the above example, these would include date of
birth, ZIP code, and sex. Finally, there are the sensitive features, such as the condition — these
should remain in the dataset, as they are they information we would like to communicate. A
dataset is k-anonymous if, for any setting of the pseudo-identifiers, there are at least k — 1 other
points with the same settings of the pseudo-identifiers. Examples are given in Figure 4, where the
left table is 4-anonymous and the right table is 6-anonymous.

Non-Sensitive Sensitive Non-Sensitive Sensitive

Zipcode | Age | Mationality Condition Zip code | Age | Nationality Condition
| 130 <30 ¥ AIDS 1 1307 <35 x AIDS
2 130** <30 + Heart Disease 2 130** <35 i Tuberculosis
3 130** <30 ¥ Viral Infection 3 130* <35 = Flu
4 130*" <30 T Viral Infection 4 130" <35 = Tuberculosis
5 130 =40 = Cancer 5 130™ <35 & Cancer
6 130™ >40 i Heart Disease 6 130" <35 = Cancer
7 130" =40 * Viral Infection T 1307 >35 = Cancer
8 130** >4 # Viral Infection 8 130" =35 : Cancer
9 130~ > 7 Cancer 9 130" =35 7 Cancer
10 130™* 3* 4 Cancer 10 130" =35 * Tuberculosis
11 130** 3 Cancer 11 130" =35 * Viral Infection
12 130" 3 Cancer 12 130" >35 * Viral Infection

Figure 4: Figure from [GKS08]. The table on the left is 4-anonymous, the table on the right is
6-anonymous.

While this resolves some issues raised in the Massachusetts GIC example above, this is still vulner-
able to several attacks we have discussed before. For instance, suppose we know that our 35-year
old friend visited the hospital corresponding to the left table in Figure 4. Then we would be able
to conclude that they have cancer. Alternatively, suppose we know someone who is 28 years old
visited the hospitals corresponding to both tables: we can infer that they have AIDS. Such issues
were highlighted by Ganta, Kasiviswanathan, and Smith [GKSO08].

References

[BRS09]

[CLE*19)]

[GKS08]

[Hal14]

[HSR+08]

[NSO08]

[Pan14]

Rosemary Braun, William Rowe, Carl Schaefer, Jinghui Zhang, and Kenneth Buetow.
Needles in the haystack: identifying individuals present in pooled genomic data. PLoS
Genetics, 5(10):1-8, 20009.

Nicholas Carlini, Chang Liu, Ulfar Erlingsson, Jernej Kos, and Dawn Song. The secret
sharer: Evaluating and testing unintended memorization in neural networks. In 28th
USENIX Security Symposium, USENIX Security ’19, pages 267-284. USENIX Associa-
tion, 2019.

Srivatsava Ranjit Ganta, Shiva Prasad Kasiviswanathan, and Adam Smith. Composition
attacks and auxiliary information in data privacy. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
'08, pages 265273, New York, NY, USA, 2008. ACM.

Jason Hall. https://www.reddit.com/r/bigquery/comments/28ialf/173_million_
2013_nyc_taxi_rides_shared_on_bigquery/cicr3n2/, June 2014.

Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waibhav Tembe, Jill
Muehling, John V. Pearson, Dietrich A. Stephan, Stanley F. Nelson, and David W. Craig.
Resolving individuals contributing trace amounts of DNA to highly complex mixtures
using high-density SNP genotyping microarrays. PLoS Genetics, 4(8):1-9, 2008.

Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse
datasets. In Proceedings of the 29th IEEE Symposium on Security and Privacy, SP 08,
pages 111-125, Washington, DC, USA, 2008. IEEE Computer Society.

Vijay Pandurangan. On taxis and rainbows: Lessons from nyc’s improperly anonymized
taxi logs. Medium, 30, 2014.

https://www.reddit.com/r/bigquery/comments/28ialf/173_million_2013_nyc_taxi_rides_shared_on_bigquery/cicr3n2/
https://www.reddit.com/r/bigquery/comments/28ialf/173_million_2013_nyc_taxi_rides_shared_on_bigquery/cicr3n2/

[SS98] Pierangela Samarati and Latanya Sweeney. Generalizing data to provide anonymity
when disclosing information. In Proceedings of the 20th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS ’98, page 188, New
York, NY, USA, 1998. ACM.

[Who14] Chris Whong. Foiling nyc’s taxi trip data. Chris Whong, 2014.

