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Up to this point, we’ve seen many different algorithms for differential privacy. This naturally raises
the question of whether this is the best we can do, or if it’s possible to do better. Today, we’re
going to see that in fact some of the simple algorithms we’ve seen so far are optimal (or at least
nearly optimal).

For the sake of presentation we’ll be focusing on two main classes of queries, though these techniques
are in fact more general As usual, we are given a dataset X ∈ X n.

1. One-way marginal queries. Our data domain is X = {0, 1}d. We wish to answer the set

of d queries fj(X) = 1
n

∑n
i=1X

(j)
i for all j ∈ [d], where X

(j)
i is the jth coordinate of the ith

point in the dataset.

2. Histograms. Our data domain is X = [k]. We wish to answer the set of k queries fj(X) =
1
n

∑n
i=1 1{Xi = j}, for all j ∈ [k].

For both families of queries, the error is measured in `∞-error: that is, the maximum of how far
off our answer is for any individual query.

For the problem of one-way marginals, the Laplace mechanism with basic and advanced composition
give (roughly) the following upper bounds:

• Under ε-pure DP, if n = Ω̃(d/εα),1 then we have error ≤ α for fj(X) for all j ∈ [d] with
probability ≥ 1/2.

• Under (ε, δ)-approximate DP, if n = Ω̃(
√
d log(1/δ)/εα), then we have error ≤ α for fj(X)

for all j ∈ [d] with probability ≥ 1/2.

Observe that there is a gap of
√
d between the two necessary values of n. Today, we will see a

nearly-matching lower bound for the pure DP case, showing that this gap is inherent – pure DP
costs more than approximate DP.

On the other hand, for histograms we have the following bounds, using the Laplace histogram and
the stability-based histogram mentioned in the last lecture.

• Under ε-pure DP, if n = Ω(log k/εα), then we have error ≤ α for fj(X) for all j ∈ [k] with
probability ≥ 1/2.

• Under (ε, δ)-approximate DP, if n = Ω(log(1/δ)/εα), then we have error ≤ α for fj(X) for
all j ∈ [k] with probability ≥ 1/2.

1Note that Õ disregards logarithmic factors in the argument.
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We will see that the former sample complexity is tight, and no algorithm can achieve the same
guarantees with a smaller value of n.

The style of argument will use a “packing” approach. The term packing comes from the idea of
trying to construct many different datasets, which each give different answers from each other on
the set of queries. To use a metaphor, consider packing many (rigid) balls into a box: every ball
will be far from each other (at least as far as the radius of each ball). The more datasets we can
pack, the stronger our lower bounds will be.

The argument, at its core, is quite elegant. If an algorithm is supposed to be accurate, our con-
struction implies that it will have to give different answers for every database. On the other hand,
if an algorithm is supposed to be private, group privacy implies that the distribution of answers for
every database must be similar. Putting these two constraints together, we get a lower bound on
how much data is necessary to achieve both of these properties simultaneously.

We illustrate this with a very simple example: trying to output the mode of a dataset over a data
domain X = [k]. We want an ε-DP algorithm M which outputs the mode correctly with probability
at least 1/2. Consider the following set of k datasets: D1, . . . , Dk, where dataset Dj consists of n
copies of point j ∈ [k]. Fix some specific j, and consider the distribution of M(Dj). Since there
are k possible outcomes, the pigeon-hole principle says that there must be at least one outcome
Pr[M(Dj) = `] ≤ 1/k.2 On the other hand, accuracy tells us that Pr[M(D`) = `] ≥ 1/2. Note that
we can convert from D` to Dj by changing n datapoints (i.e., the whole dataset). We will use this
in combination with group privacy – while this regime might seem unusual, it’s useful for proving
lower bounds. In particular, it gives the following:

1

2
≤ Pr[M(D`) = `] ≤ enε Pr[M(Dj) = `] ≤ enε

k
.

Taking the logarithm of both sides gives n ≥ log(k/2)/ε: saying we need Ω(log k/ε) datapoints in
order to achieve both accuracy and privacy simultaneously.

This is the core argument specialized to a simple case, we will derive results which apply in somewhat
more general settings.

Theorem 1. Let D1, . . . , Dm ∈ X n be a set of m datasets, which are at Hamming distance at most
t from some fixed dataset D ∈ X n. Let Y1, . . . , Ym ∈ Y be a set of m disjoint subsets of the space
Y. If there is an ε-DP mechanism M : X n → Y such that Pr[M(D`) ∈ Y`] ≥ p for every ` ∈ [m],
then

1

m
≥ pe−tε.

Proof. For any `, the accuracy guarantee says Pr[M(D`) ∈ Y`] ≥ p. Group privacy says that
Pr[M(D`) ∈ Y`] ≤ Pr[M(D) ∈ Y`]etε. Rearranging implies that Pr[M(D) ∈ Y`] ≥ pe−tε.

Since the Y`’s are disjoint, we have that

1 ≥ Pr[M(D) ∈ ∪`∈[m]Y`] =
∑
`∈[m]

Pr[M(D) ∈ Y`] ≥ mpe−tε.

Rearranging this gives the desired conclusion.

2If not, then the sum of the probabilities would exceed 1.
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To prove a lower bound for one-way marginals, we will focus on a simple case: p = 1/2 and t = n
(which is the trivial bound, since all datasets are at distance at most n apart). In this case, we
have m ≤ 2enε, or n ≥ log(m/2)/ε – the same statement we showed in the toy example above.

Let us see how to apply this theorem to prove the following lower bound for one way marginals. In
fact, for educational purposes, we will consider the fixed case when α = 1/2.

Theorem 2. Any ε-DP algorithm M : {0, 1}n → [0, 1]d which simultaneously answers all one-way
marginals to error < 1/2 with probability ≥ 1/2 requires n = Ω(d/ε).

Proof. We consider the following set of m = 2d databases: for each point w in {0, 1}d, each database
consists of n copies of the single point w. Let Dw be the string corresponding to point w, and Yw
is the `∞-ball of radius 1/2 surrounding w:

Yw = {x ∈ [0, 1]d : |xj − wj | < 1/2, ∀j ∈ [k]}.

Observe that these sets are indeed disjoint. Furthermore, they exactly correspond with our desired
accuracy guarantee: we need that Pr[M(Dw) ∈ Yw] ≥ 1/2. Applying Theorem 1 with these m = 2d

databases and sets, fixing p = 1/2, and using t = n, we get n = Ω(log(2d)/ε) = Ω(d/ε), as
desired.

Again, this shows that we need n = Ω(d) datapoints to compute the marginals to non-trivial
accuracy under pure DP, whereas n = O(

√
d) are sufficient under approximate DP. It is also

possible to show that n = Ω(
√
d) samples are necessary for this problem under approximate DP,

but this uses a significantly more challenging technique known as fingerprinting, which we will not
cover in this course.

We saw how easy it can be to apply Theorem 1. All we need to do is select the right packing of
databases, and the results follow easily. We will now see the same approach applied to proving
lower bounds for histograms, though we also obtain a dependence on α as well. The same changes
can be made to obtain a similar dependence for one-way marginals.

Theorem 3. Any ε-DP algorithm M : [k]n → [0, 1]k which estimates all histogram counts to error

≤ α with probability ≥ 1/2 requires n = Ω
(
log k
αε

)
.

Proof. For a dataset X ∈ [k]n, let h(X) ∈ [0, 1]k be its (normalized) histogram representation.
Let y(X) ⊂ [0, 1]k be the `∞-ball of radius α around h(X) – the accuracy guarantee says that
Pr[M(X) ∈ y(X)] ≥ 1/2 for all databases X. For Theorem 1 to apply, we require that these sets
are disjoint for a constructed set of databases, we specify this now. We construct k databases D1

through Dk: for each ` ∈ [k], database D` will have t = 2αn copies of `, and (1− 2α)n copies of 1.
Letting Y` = y(D`), it is not hard to see that these sets are disjoint – consider Y`’s inflated values
on coordinate ` in comparison to the other sets. Observe that all databases can be converted to D1

by changing at most t points, since there are at most t points which are not 1. Applying Theorem 1
gives the following bound:

1

k
≥ e−εt/2.

Taking the logarithm of both sides and rearranging, we have t ≥ log(k/2)
ε , or n = Ω

(
log k
αε

)
.

3


