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Let’s really get started on differentially private machine learning. But before we get to that, we
need to lay some groundwork in the non-private setting.

A Quick Primer on Non-Private Machine Learning

Formulation. At its core, any machine learning problem (private or non-private) can be generi-
cally expressed as follows. We have a dataset D of (x, y) pairs, where the x’s are the feature vectors,
and the y’s are the labels. There is a problem specific loss function `, which takes in a parameter
vector θ and a datapoint, and outputs a value:

L(θ,D) =
n∑
i=1

`(θ, xi, yi).

If this is too abstract, you can think of xi, θ ∈ Rd, yi ∈ R, and `(θ, xi, yi) = (〈xi, θ〉 − yi)2 as the
squared-loss for the classic problem of linear regression.

At its core, we will focus on the problem of empirical risk minimization (ERM). This fancy term
just means that we want to find θ which minimizes L(θ,D). The goal will be: given a dataset
D of n (x, y) pairs from a universe X , and a closed convex “parameter set” C, minimize L(θ,D)
over θ ∈ C. The expected excess empirical risk of an algorithm is E[L(θ̂, D) − L(θ∗, D)], where
θ̂ is the parameter the algorithm outputs, and θ∗ is the true minimizer of L(θ,D) over θ ∈ C.
The expectation is only over the randomness of the algorithm (i.e., the dataset is considered to be
a fixed, deterministic input). There will be a corresponding classifier fθ(x) which will be used to
assign labels to new points, but since our only focus is empirical risk minimization, we will generally
not consider this function. For example, in the linear regression problem, this function is 〈x, θ〉.

As stated, this formulation is quite general, and trying to solve it without further restrictions would
prove to be a fruitless endeavour. We will impose a few restrictions in order to avoid nastiness
which would arise otherwise. In particular, we will assume the diameter of C is bounded, `(·, xi, yi)
is convex and L-Lipschitz for all (xi, yi) ∈ X .

Terminology. We explain a few terms before we proceed:

• The gradient of a function `(θ) : Rd → R at a point θ̃ is a vector ∇` ∈ Rd where the ith

coordinate is ∂`(θ̃)
∂θi

.

• We denote the diameter of a set C as ‖C‖2. This is the maximum distance between any two
points in C.

• A function ` : C → R is convex if for all x, y ∈ C, we have that for all t ∈ [0, 1], f(tx+(1−t)y) ≤
tf(x) + (1− t)f(y).
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• A function ` : C → R is L-Lipschitz (in `2-norm) if for all x, y ∈ C, we have |`(x) − `(y)| ≤
L‖x − y‖2. As an exercise, verify that this implies that ‖∇`‖2 ≤ L. Hint: a gradient is just
a multivariate derivative, so it might be easier to start with the univariate case.

Loss Functions. There are other restrictions which are common to impose on the loss function,
including strong convexity and smoothness (essentially saying that, at all points, the function is
lower and upper bounded by a quadratic function at every point). However, details on these are
more advanced than required for this lecture, so we will not describe them further here (though we
will mention them when required).

Let’s see a few examples of common loss functions. In all the following examples, we have x, θ ∈ Rd.

1. Linear Regression: We have y ∈ R, and `(θ, x, y) = (〈x, θ〉 − y)2.

2. Logistic Regression: This is a classification problem, so y ∈ {±1}, and `(θ, x, y) = log(1 +
e−y〈x,θ〉).

3. Geometric median: This is an “unsupervised” task, and y is not used in the loss function.
We have the loss function `(θ, x, y) = ‖θ − x‖2. This is easily seen to be 1-Lipschitz. Note
the related loss function `(θ, x, y) = ‖θ − x‖22, which is used for the mean.

4. Support Vector Machines (SVMs): Another classification task, where y ∈ {±1}. The loss
function here is the hinge loss `(θ, x, y) = max(0, 1−y〈x, θ〉), and it is L-Lipschitz if ‖x‖2 ≤ L.

Optimization. Our entire focus during today’s class is essentially an optimization question.
How do we find the parameter θ̂ which minimizes the loss function? The most common and flexible
method is gradient descent. We will describe it in more detail in the final part of this lecture, as
we discuss how to privatize this method. However, until then, we will simply claim there exists
some black-box algorithm which is capable of optimizing convex loss functions non-privately, and
describe how they can be used to solve ERM problems privately.

Generalization. The focus of today’s lecture is ERM – that is, we wish to find the parameter
that minimizes the loss function on a given dataset. However, this is not typically the end goal of
actual machine learning algorithms. In the real world, we often have training data generated from
some distribution, and we want the learned classifier to perform well on new data generated from
the same distribution. It is frequently the case that this will follow if one simply performs ERM on
the training data – this phenomenon is known as generalization. That said, this is not the focus of
this lecture, and we focus only on the ERM problem.

Privacy Considerations. The goal of differentially private machine learning is to output a pa-
rameter vector θ which is differentially with respect to the training dataset D. Unfortunately,
naively solving an ERM problem may reveal sensitive information. While we have discussed this
numerous times in previous lectures, let’s use a few more technical examples. Consider the (geomet-
ric) median in 1 dimension: if the number of points n is odd, this will exactly output an element of
the training dataset, clearly violating this privacy notion. Similar phenomena arise for SVMs: it is
well known that the optimal parameter vector θ is entirely determined by the datapoints which are
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closest to it (known as the support vectors). Removing one of these points or adding a new point
closer than previous support vectors could dramatically shift the parameter vector, again violating
differential privacy. Thus we can see that, even from a technical perspective, a näıve approach will
not work.

In the following sections, we will investigate a few different methods of privatizing machine learning
procedures, which apply noise in different stages of the pipeline: namely, output perturbation,
objective perturbation, and gradient perturbation.

We note that another natural method for privatization is input perturbation, in which the input
dataset is privatized and then by post-processing, we can do whatever non-private operations we
want on the result. However, privatizing the input dataset is essentially synonymous with local
differential privacy, which would necessitate significantly more data. As such, we do not cover it
here.

Output Perturbation

The first approach, output perturbation (introduced in [RBHT12, CMS11]), is perhaps the most
obvious and familiar method to guarantee differential privacy. We simply compute the non-private
solution to an ERM problem, add appropriately calibrated noise, and release the result. However,
as we alluded to in the above discussion on privacy considerations, the non-private solution might
be highly sensitive to the input. We will employ regularization, a technique commonly used in
machine learning in non-private settings as well.

Though we have already seen a few examples where the parameter vector θ is sensitive to the input
dataset, we provide one more in the form of polynomial regression. Suppose we have a set of n
points (xi, yi) ∈ R2, which we wish to fit using a polynomial. That is, we consider the square loss

function `(θ, x, y) =
(∑k

j=0 θjx
j − y

)2
, and associated predictor is

∑k
j=0 θjx

j . Since we might not

know what degree k is needed to appropriately fit the dataset, we could set k = n, thus learning
the model using a degree-n polynomial. Without further restrictions, this will perfectly interpolate
the dataset (“connect the dots”) with a rather unnatural and extreme looking curve. This achieves
an excess empirical risk of 0, but is associated with a couple of problems. With the motivation of
privacy, the solution would clearly differ greatly on neighbouring databases: adding a point would
cause the polynomial to reshape significantly to fit this new point. Another issue (if you look at it
right, the same issue), and the motivation in classical machine learning, is that this “overfits” to
the training dataset and fails to generalize well. Suppose you receive a new point which is not in
the training dataset. Unless this happens to lie precisely on the curve, it is likely to be a very poor
at predicting the correct label.

The standard way of getting around this is using a method called regularization – we add a term to
the loss function which favours parameter vectors θ which are somehow “simple.” In other words,
we instead try to minimize the function

L(θ,D) =
n∑
i=1

`(θ, xi, yi) + λN(θ),

where N is a function which depends only on the parameter vector θ and not the datapoint. λ
is a parameter which indicates the emphasis on regularization. Setting λ = 0 corresponds to no
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Figure 1: An illustration of regularization in action, by Wikipedia user Nicoguaro. The blue
curve is unregularized, and overfits to the given dataset. The green curve is with regularization,
and simultaneously seems less sensitive to each individual point, as well as more likely to fit new
datapoints from the same distribution.

regularization, while λ =∞ corresponds to ignoring the data entirely. In our polynomial regression
example, a common choice is to regularize via the `2-norm of the parameter vector θ, corresponding
to N(θ) =

∑k
j=0 θ

2
j . Intuitively, this prevents the solution from varying wildly by the addition of a

new training example, as θ is held back by the requirement to also have a small `2-norm. This can
be formalized, consider the following lemma in [CMS11].

Lemma 1 (Corollary 8 in [CMS11]). If N is differentiable and 1-strongly convex, and ` is convex
and 1-Lipschitz, then for all θ, the `2-sensitivity of arg minL(θ,D) is at most 2n

λ .

The proof of this is not too hard, exploiting all the given properties of N and `, and we don’t cover
it here. But with this piece in place, it is easy to complete the argument towards a differentially
private algorithm. Simply compute

θ̃ = arg min
θ∈C
L(θ,D)

and output θ̂ = θ̃ + b, where b is an appropriate noise random variable. For instance, b ∼
N
(

0, O
(
n2 log(1/δ)

λ2ε2

)
· Id×d

)
noise suffices for (ε, δ)-DP.

4



Objective Perturbation

The next approach is qualitatively different from most other approaches we’ve seen before. In
objective perturbation, introduced in [CMS11] and developed in [KST12], we add noise to the
objective function which we are optimizing. Consider a regularized objective function of the form

L(θ,D) =

n∑
i=1

`(θ, xi, yi) +
λ

2
‖θ‖22.

Rather than solving this optimization problem, we instead solve a related problem where the
components of the parameter vector θ are penalized or rewarded by a random amount:

Lpriv(θ,D) =

n∑
i=1

`(θ, xi, yi) +
λ

2
‖θ‖22 + 〈b, θ〉,

where b is distributed according to either a Gamma or Gaussian distribution (depending on whether
we want pure or approximate differential privacy). Indeed, it can be shown that non-private
optimization of Lpriv guarantees the appropriate privacy notion. The proof involves reasoning
about the optimization landscape of the perturbed function under neighbouring datasets, and gets
a bit technical, so we again omit it here.

One limitation of early works in this area [CMS11, KST12] is that they require the non-private
optimization algorithm to find an exact minimum for the function in order to guarantee privacy.
This highlights their impracticality for a number of reasons. For instance, numerical precision
issues on finite computers might result in not finding an exact optimum. While this might seem
contrived, attacks like this have been demonstrated for even the basic Laplace mechanism [Mir12].
Another issue is that most optimizers, such as gradient descent, are iterative in nature – they find
a solution by taking steps towards an optimum, getting closer to (but never reaching) this point.
More recent work has removed this restriction, only requiring that the non-private algorithm finds
an approximate optimum [BFTT19, INS+19]. With improvements like this, variations of objective
perturbation can be shown to be quite practical: [INS+19] gives some of the best empirical results for
practical differentially private convex optimization. While this work requires that the loss function
is convex to achieve both privacy and accuracy, more recent results have removed the requirement
of convexity for proving privacy [NRVW20]. It remains to be seen whether these approaches might
prove applicable for modern large scale machine learning settings.

Gradient Perturbation

The current prevailing approach for differentially private machine learning is gradient perturbation,
in which we perform a noisy form of gradient descent. This approach was first suggested by [WM10]
and later by [SCS13], but it was most developed by Bassily, Smith, and Thakurta [BST14] (whose
work we will be covering today). There is more recent work towards making this approach practical
and applying it on neural networks, but we will cover that in a future lecture.

Before we talk about noisy gradient descent, we must first talk about regular gradient descent,
described in Algorithm 1. The idea is to iteratively take steps in the direction of the gradient of
the loss function. By properties of convex functions, this will lead us towards the global minimum,
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at which point the gradient will be 0. The function η(t) is a “learning rate” (determining the size
of the step in the direction of the gradient), and ΠC is the projection operator on the set C (if we
take a step to a parameter which is outside the feasible set C, move to the nearest θ ∈ C).

Algorithm 1: Projected Gradient Descent

Set θ0 ∈ C arbitrarily
for t = 1 to T do

Compute θt = ΠC (θt−1 − η(t)∇L(θt−1, D))
end

return θ̂ = θT

This algorithm is effective in fairly general settings, we state one such guarantee here. It will be
slightly more general than we need for now, but this will come in handy later.

Theorem 2 (Theorem 2 from [SZ13]). Let F be a convex function and let θ∗ = arg minθ∈C F (θ).
Let θ0 be an arbitrary point in C, and θt+1 = ΠC (θt − η(t)Gt(θt)), where E[Gt(θt)] = ∇F (θt) and

E[‖Gt(θt)‖22] ≤ G2, and the learning rate function η(t) = ‖C‖2
G
√
t
. Then for any T > 0, we have the

following:

E[F (θt)− F (θ∗)] = O

(
‖C‖2G log T√

T

)
.

We can immediately apply this with parameter G equal to n times the Lipschitz constant L. This
tells us that if we run Algorithm 1 for T iterations with learning rate function η(t) = ‖C‖2

L
√
t
, we

achieve an expected excess empirical risk of Õ
(
‖C‖2nL√

T

)
. Note that given enough time (i.e., a large

enough T ), this quantity can be taken arbitrarily small. In particular, if we take T ≥ Ω
(
n2L2‖C‖22

α2

)
,

the expected excess empirical risk is bounded by α, for any value of n.

One downside is running time of this full gradient descent algorithm, which takes Tn ≈ n3 gradient
calculations. Much more popular in practice is the stochastic gradient descent algorithm, described
in Algorithm 2. The main difference is that, instead of computing the exact value of gradient for
the entire dataset, we select a random point from the dataset and evaluate the gradient for this
one point.

Algorithm 2: Stochastic Projected Gradient Descent

Set θ0 ∈ C arbitrarily
for t = 1 to T do

Select i ∈ [n] uniformly at random
Compute θt = ΠC (θt−1 − η(t) (n · ∇`(θt−1, xi, yi)))

end

return θ̂ = θT

This algorithm has exactly the same accuracy guarantees as before. In particular, we apply The-
orem 2 with Gt(θt) = n · ∇`(θt, xi, yi), where i ∈ [n] is chosen uniformly at random. This results
in E[Gt(θt)] = ∇L(θt, D) and E[‖Gt(θt)‖22] ≤ n2L2, as before. This gives the exact same error we

achieved in the full gradient descent setting: if T ≥ Ω
(
n2L2‖C‖22

α2

)
, the expected excess empirical

risk is bounded by α, for any value of n. The main difference is that this only requires T ≈ n2

gradient computations, whereas before we needed ≈ n3.
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Private Stochastic Gradient Descent

Let’s now privatize SGD. As Algorithm 2 is so simple, there’s really only one place to inject noise
into the process: the gradient computation. We compute the gradient, and then add Gaussian
noise to privatize it. Since the loss function is Lipschitz, this bounds the magnitude of the gradient
and thus the sensitivity. Adding Gaussian noise and applying advanced composition guarantees
privacy. The utility analysis is even simpler: we apply Theorem 2 again, with a slightly different
expression for the second moment of the estimate of the gradient. We elaborate on both these
arguments below.

Algorithm 3: Private Stochastic Projected Gradient Descent

Define σ2 ← 32L2n2 log(n/δ) log(1/δ)
ε2

Set θ0 ∈ C arbitrarily
for t = 1 to n2 do

Select i ∈ [n] uniformly at random
Compute θt = ΠC (θt−1 − η(t) (n · ∇`(θt−1, xi, yi) + bt−1)), where bt−1 ∼ N(0, σ2 · Id×d)

end

return θ̂ = θn2

Utility

Utility is straightforward using Theorem 2. This time, we use Gt(θt) = n · ∇`(θt, xi, yi) + bt, where
i ∈ [n] is chosen uniformly at random and bt−1 ∼ N(0, σ2 · Id×d). Once again, we have that
E[Gt(θt)] = ∇L(θt, D) – this is the exact same as the non-private case, but the added noise has
mean 0. For the second moment of Gt, we have

E[‖Gt‖22] = n2E[‖∇`(θt, xi, yi)‖22] + 2nE[〈∇`(θt, xi, yi), bt〉] + E[‖bt‖22] ≤ n2L2 + 0 + dσ2.

The first term is bounded exactly as we have done before. The second term is equal to 0, since
the gradient and the Gaussian noise are independent of each other and the latter has mean 0. The
third term is the sum of the squares of d Gaussians, each with variance σ2.

Substituting this into the statement of Theorem 2, we get that the expected excess empirical error
is bounded as

E[L(θt, D)− L(θ∗, D)] = Õ

(
‖C‖2

√
n2L2 + dσ2√
n2

)
= Õ

(
‖C‖2L

√
d log(1/δ)

ε

)
.

Privacy

The last thing to do is argue that this is private. This will be by a combination of the Gaussian
mechanism, amplification by subsampling, and advanced composition. Recall that we can bound
the `2-sensitivity of n · ∇`(θt−1, xi, yi) by nL. Suppose for the time being that the choice of i ∈ [n]
for each time step t was fixed. Then the Gaussian mechanism would guarantee that for each t, the
privacy loss random variable for Gt(θt) is ≤ ε

2
√

log(1/δ)
with probability at least 1− δ/2. However,

we can strengthen this guarantee, using the inherent randomness in the sampling process: since
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we pick a set of size γn with γ = 1/n, this randomness is amplified by a factor of n/2, using the
following lemma.

Lemma 3. Suppose an algorithm is ε′ < 1 differentially private. If it is executed on a uniformly
random subset of the dataset of size γn, then it will be 2γε′-differentially private.

Thus, for each iteration, the privacy loss random variable will be bounded by ε

n
√

log(1/δ)
with

probability at least 1 − δ/2. Using advanced composition for all n2 iterations, this multiplies the
overall privacy loss by (roughly) n, giving (ε, δ)-DP overall.
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