
CS 860: Algorithms for Private Data Analysis Fall 2020

Lecture 14 — Private ML and Stats: Modern ML

Prof. Gautam Kamath Scribe: Gautam Kamath

In today’s lecture, we will discuss methods for differential privacy in modern machine learning
settings. We will mainly cover two approaches, differentially private stochastic gradient descent
(building off the coverage in the last lecture), and a method based on private aggregation of non-
private learning algorithms. First, we give a quick primer on neural networks, and why they don’t
necessarily fit into our framework from the last lecture. The details will here will not be incredibly
important (we will not depend on them afterwards), but it might serve as a useful background if
not familiar.

Neural Networks

We will only describe the most fundamental class of neural networks, known as multilayer percep-
trons. Other classes are similar, but swapping in different layers in place of what we describe here.
As before, we have a dataset D of (x, y) pairs, a loss function `, and the goal is to find a parameter
vector θ which minimizes the following quantity:

L(θ,D) =
n∑
i=1

`(θ, xi, yi).

Suppose that the data domain has x ∈ Rd, and the label space is y ∈ [k].

A neural network consists of a number of “layers,” where the input to the first layer v(0) is equal
to the input x, and the output of the ith layer is

v(i) = f (i)(W (i)v(i−1) + b(i)),

where v(i) ∈ Rmi , and the parameters W ∈ Rmi×mi−1 , b(i) ∈ Rmi . f (i) : R → R is an “activation
function.” In a slight abuse of notation, we apply this function to a vector to indicate it is applied
element-wise to the vector. These activation functions are typically non-linear in nature, which
seems to add significant expressive power to neural networks. Some common non-linearities include
the rectified linear unit (ReLU) f(x) = max{0, x}, sigmoid f(x) = 1

1+e−x , and tanh f(x) = ex−e−x

ex+e−x .
ReLU is generally the most popular activation function nowadays.

The output of the last layer o will be of dimension k, matching the number of possible labels. To
convert from these values to a prediction for the label, we have the prediction vector ŷ = softmax(o),

where ŷi = exp(oi)∑
i∈[k] exp(oi)

. Note that this normalizes ŷ, leading to the interpretation of this vector as

a probability distribution. With all of these components in place, we have the loss function

`(θ, x, y) = −
k∑
j=1

yj log ŷj ,

where we take y to be the one-hot vector with a 1 in the index of the true label, and 0 elsewhere. Note
that the dependence on the parameter vector θ is implicit in the definition of ŷ, and corresponds
to the parameters W and b for each layer.

1

As mentioned before, this description corresponds to a very simple neural network. While neu-
ral networks have led to improved performance in complex machine learning tasks, they are not
particularly “nice” in many ways, and we do not understand them well. For instance, while our
discussion from last lecture showed that (stochastic) gradient descent could minimize the empiri-
cal risk, it depended on the loss function being convex, which is not the case here. Nonetheless,
stochastic gradient descent has been seen to be empirically effective at optimizing neural networks.
Furthermore, our privacy analysis required the loss function to be Lipschitz, in order to get an
absolute bound on sensitivity of our gradients. We will simply clip the gradients to enforce a limit.

Differentially Private Stochastic Gradient Descent

In the previous lecture, we saw an approach for private SGD [BST14]. A work by Abadi, Chu,
Goodfellow, McMahan, Mironov, Talwar, and Zhang [ACG+16] develops this method, making it
more practical, and applying it to neural networks.

Recall that the work of [BST14] proposed iterating the following procedure:

1. Select a random point (xi, yi) from the dataset,

2. Compute the gradient of `(θt, xi, yi) and add Gaussian noise,

3. Take a step in the negative direction of the noised gradient.

Abadi et al. slightly modify this, resulting in the following procedure.

1. Sample a “lot” of points of (expected) size L by selecting each point to be in the lot indepen-
dently with probability L/n,

2. For each point (xi, yi) in the lot, compute the gradient of `(θt, xi, yi) and “clip” it to have `2
norm at most C.

3. Average these clipped gradients and add Gaussian noise.

4. Take a step in the negative direction of the resulting vector.

As we can see, the second step deals with the fact that in these settings, we do not have a Lipschitz
loss function, and thus the gradient may be unboundedly large. It deals with this in a rather crude
way: simply clip each gradient so that its `2-norm is at most some pre-set bound C. Recall in the
last lecture, for convergence of stochastic gradient descent, we required the estimate of the gradient
to be unbiased. Since we clip the gradients, this loses information and biases the estimate, and this
is no longer the case. However, since we are in a non-convex setting, we already had lost rigorous
convergence guarantees. Nonetheless, this clipped SGD still seems to be effective in practice.

The other difference is the slightly different sampling scheme. Before, we chose a single sample
from the training data and computed the gradient on this point. Recall this method of selection
was important in our privacy calculation, allowing us to reduce the value of ε by a factor of n.
Now, we choose a lot by selecting each point independently with probability L/n, where L is a
hyperparameter determining the lot size. Note that even if we chose L = 1, this would not be

2

equivalent to the previous scheme, as we might choose more or fewer than 1 point. There are
actually a number of different methods of randomly choosing a subset of the training data of size
(roughly) L, including choosing each point independently with probability L/n (known as Poisson
sampling), choosing L points without replacement, and choosing L points with replacement (where
a point may be selected multiple times). While these methods of choosing minibatches may seem
similar and arbitrary, they would have implications for the privacy analysis. In practice, people use
the same method as in the non-private setting for choosing mini-batches: randomly permute the
dataset and iterate over them in order. This is not equivalent to any of the aforementioned methods,
and in particular correlation between mini-batches affects the privacy analysis. Nonetheless, it is
common (and incorrect) to train like this and use the same privacy analysis as for the Poisson
sampling case.

The last theoretical contribution of this work is a tighter privacy analysis. Let q = L/n be the
subsampling probability. Suppose we performed the analysis as done in the previous lecture. Recall
this was a combination of the Gaussian mechanism’s privacy guarantees, with subsampling amplifi-
cation and advanced composition. If each step without subsampling would achieve (ε, δ)-DP, then
the overall process would be (roughly) (O(qε

√
T log(1/δ)), T δ). In constrast, Abadi et al. give a

better analysis that achieves (O(qε
√
T), δ). As shown in Figure 1, the savings can be substanial.

Note that these are two ways of analyzing the exact same algorithm, one of which gives better
guarantees. It is possible that a further analysis may lead to even better privacy guarantees for
an algorithm which has already been run. Indeed, there have been improved analyses of differ-
entially private SGD [WBK19, MTZ19], giving better guarantees than what was known before.
This naturally raises the question of whether the analyses we have are “close” to optimal, or if
there is room for significant improvement. A complementary recent work of Jagielski, Ullman, and
Oprea [JUO20] develops privacy attacks, thus showing that we’re not really that far off from the
true privacy guarantees, as we can cook up instances in cases which roughly match the analysis.

To get an intuition for how we might surpass prior analyses, we recall the privacy loss ran-
dom variable between random variables X and Y , which is distributed by drawing t ∼ Y and

then outputting LY ||Z = ln
(
Pr[Y=t]
Pr[Z=t]

)
. Pure ε-differential privacy of a mechanism M says that

LM(X)||M(X′) ≤ ε for all neighbouring datasets X and X ′. Approximate (ε, δ)-differential privacy
says that LM(X)||M(X′) ≤ ε for all neighbouring datasets X and X ′ with probability 1− δ. Another
relevant quantity to consider are the moments of this random variable. Specifically, we can imagine
bounds of the form

lnEt∼M(X)

[(
Pr[M(X) = t]

Pr[M(X ′) = t]

)λ]
= lnEt∼M(X)

[
exp

(
λ ln

(
Pr[M(X) = t]

Pr[M(X ′) = t]

))]
≤ γ

It is easy to see this implies a (ε, δ)-DP bound, by Markov’s inequality:

Pr
t∼M(X)

[
ln

(
Pr[M(X) = t]

Pr[M(X ′) = t]

)
≥ ε
]

= Pr
t∼M(X)

[
exp

(
λ ln

(
Pr[M(X) = t]

Pr[M(X ′) = t]

))
≥ exp(λε)

]

≤
Et∼M(X)

[
exp

(
λ ln

(
Pr[M(X)=t]
Pr[M(X′)=t]

))]
expλε

≤ exp(γ − λε).

Recall that the Gaussian mechanism offers a whole spectrum of approximate differential privacy
bounds. Similarly, for each exponent λ, it is possible to compute a corresponding γ. It turns out

3

Figure 1: Figure from [ACG+16], showing the difference between using the improved analysis
provided in their paper (called moments accountant) versus advanced composition.

that this latter representation will allow us to achieve a slightly tighter understanding of what
happens when we apply composition of multiple queries.

It is possible to define an entire notion of differential privacy, known as Rényi Differential Privacy
(RDP) [Mir17], based off of bounding moments of the odds ratio. RDP enjoys essentially all of
the properties of differential privacy, including composition, being closed under post-processing,
group privacy, and importantly, subsampling amplification. With these tools in place, the analysis
of DPSGD can (abstractly) be outlined as follows:

1. For every λ simultaneously, obtain a corresponding γ in the expression above for the pri-
vacy guarantees of the subsampled Gaussian mechanism. That is, we perform the Poisson
subsampling as described earlier, and apply the Gaussian mechanism with appropriate noise.

2. Apply composition of the privacy guarantees for the T iterations of the algorithm.

3. For a desired ε, compute the optimal associated δ by minimizing the expression exp(γ − λε)
over all λ and their corresponding γ.

This approach is called moments accountant, and there exists code for computing it efficiently in
most differential privacy libraries. Note that this is completely data independent, and given a set
of parameters (namely, the number of datapoints n, the lot size L, the variance of the noise σ2, the
number of epochs T , and the target δ), it can compute the privacy guarantee in advance (i.e., the
corresponding ε).

The results are passable, but not phenomenal. For instance, one common benchmark is image clas-
sification on the MNIST dataset. One state-of-the-art result (based on DPSGD, but with additional

4

tuning) gets 98.1% accuracy with (2.93, 10−5)-DP [PTS+20], whereas the best non-private meth-
ods get closer to 99.8% accuracy. A more challenging task is image classification on the CIFAR-10
dataset. Non-privately, methods are able to achieve 99.7% accuracy, while with (7.53, 10−5)-DP, we
are able to achieve only 66.2% accuracy [PTS+20]. Neither the privacy guarantee or the accuracy
guarantee are very compelling at the moment. There is clearly a lot of work to be done to improve
the state of differentially private machine learning.

While DPSGD acts as a drop in replacement for SGD, there are many qualitative differences in the
differentially private setting. We discuss some of them here.

One common complaint is that DPSGD is much slower than traditional SGD. The reason is that
DPSGD requires one to clip each individual gradient in order to limit the sensitivity. Most modern
machine learning frameworks are not built for this procedure, having methods which are optimized
to use the GPU to compute the gradient over an entire mini-batch at once in parallel. The require-
ment of per-example gradients diverges from this standard, and the naive method of computing
them would necessitate processing all points sequentially, thus losing all speedup granted by paral-
lel processing on GPUs. As such, alternative algorithms for obtaining per-example gradients have
been proposed [Goo15, RMT19], and sometimes alternative frameworks may be more efficient due
to their low-level features, notably the recently-introduced framework JAX [SVK20].

As mentioned before, the ReLU is the most popular activation function in non-private machine
learning, due to several convenient properties such as the ability to avoid “vanishing gradients”
(an issue we will not get into here). However, in the differentially private setting, it appears that
the tanh function (considered obsolete in the non-private setting) yields significant performance
improvements [PTS+20]. This is one example showing that there can be benefits associated with
modifying a network’s architecture for the differentially private setting. On a similar note, non-
private neural networks have grown exceptionally large, with the number of parameters growing into
the hundreds of billions. This is because the size of a model is associated with higher “capacity,”
meaning that it can learn more functions. However, DPSGD requires the addition of Gaussian
noise of magnitude proportional to the square root of the number of parameters. Thus, if we tried
to run DPSGD on such a large model, our noise would drown out all signal. One must carefully
choose the network architecture with this in mind – too small and the network wouldn’t be able to
represent the function, and too large and the noise would be overwhelming.

Hyperparameter tuning is a common challenge in machine learning tasks, and even more are intro-
duced in the differentially private setting. For instance, how does one choose the learning rate, the
lot size, the clipping norm, or the number of epochs? The canonical way to do this (non-privately)
is to run a number of analyses on the training data with various hyperparameter settings, and
choose the one which performs best on a validation set. Doing this in the differentially private
setting would incur a cost in our privacy budget with every run, a cost which is currently omitted
in most DP machine learning papers. This can be seen as pushing the methods to their limits,
though they do not correspond to true privacy guarantees. Some methods have been proposed for
hyperparameter optimization in a differentially private manner [LT19]. Another approach is to use
public (non-sensitive) data that may have come from the same distribution as the private dataset.
One can thus perform hyperparameter tuning on the public data, which will hopefully be suitable
for the private data. An example of this is presented in [ACG+16], in which they treat the large
CIFAR-100 dataset as public, and use this to train a neural network. They then freeze the majority
of parameters in the model, and train the remainder privately on the sensitive CIFAR-10 dataset,
achieving much better accuracy on the test set than without the CIFAR-100 training.

5

Figure 2: Figure from [PAE+17]. An illustration of the PATE pipeline.

Private Aggregation of Teacher Ensembles

Another approach involves private aggregation of teacher ensembles, or PATE for short. This
approach was introduced in [PAE+17], refined in [PSM+18], and a theoretical version of this method
was analyzed in [BTGT18] (presentation in this lecture will conflate all these methods but mostly
focus on the latter, specific details are available in individual papers). In contrast to DPSGD,
PATE can be used on top of an arbitrary non-private learning algorithm, making it more flexible –
essentially, it only relies upon the non-private method being as accurate as possible. On the other
hand, it requires a supply of public (i.e., non-sensitive) unlabeled data during the training process,
which comes from the same distribution as the sensitive data. From a technical standpoint, PATE
uses ideas of stability, as we discussed in lecture 10.

PATE works in the sample and aggregate framework, as introduced by Nissim, Raskhodnikova,
and Smith [NRS07]. In this framework, a non-private algorithm is run on disjoint sets of data in
order to obtain an answer to some query on each dataset – this is the “sample” step. The answers
are combined (or as the name suggests, aggregated) in a differentially private manner, and we can
output the result. The idea is, if the query has the same answer on most of the datasets (as perhaps
it should, if they came from the same underlying population), then we can output this value at a
low privacy cost, using the stability-based histogram mode as discussed in lecture 10 (some of these
stability-based methods are formalized in [TS13]).

An illustration of the method is in Figure 2. The idea is the following. We split the data into n
datasets, and use each dataset to train a separate non-private classifier. These will be known as
the “teachers.” Ideally, each of these teachers will then be highly accurate on the dataset.

Using this, it is not hard to make a single prediction under the constraint of differential privacy. If
we want to label some point x, we run all n teachers on x to obtain non-private labels ŷ1, . . . , ŷn.
If these teachers are highly accurate, (say) 0.99n of them will agree on the correct label. Since this
leads to a large gap between the mode and the second most frequent label, we can release this value
exactly using the stability-based mode from lecture 10. Remember how this works: we measure
the gap between the two most frequently occurring elements and check if this is large (privatizing
this quantity using the Laplace mechanism). If so, we can output the mode exactly, otherwise, we
output randomly.

Instead of just one classification, suppose we wanted to answer T such classification tasks. Naively,
the privacy cost would grow proportional to

√
T , using advanced composition. Instead, it’s possible

to use the sparse vector technique to ensure that we only pay
√
c, where c is the number of unstable

predictions. Recall that sparse vector can answer a series of queries, only paying a cost based on
the number of queries which are above the threshold. Our queries will be of the form “If we tried

6

to classify this image using these n classifiers, is the gap between the most and second most likely
prediction they provide significantly large?” Setting things up the right way, we only have to pay
when the answer is no.

So now we can answer a series of many classification tasks privately, but our privacy budget will
still eventually be exhausted. However, the private predictions we have produced themselves have
value. While the feature vectors are public, all the predictions are appropriately private, thus giving
us a privatized synthetic dataset. This can be fed into a non-private learning algorithm to train a
new model.

References

[ACG+16] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal
Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings of the
2016 ACM Conference on Computer and Communications Security, CCS ’16, pages
308–318, New York, NY, USA, 2016. ACM.

[BST14] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk mini-
mization: Efficient algorithms and tight error bounds. In Proceedings of the 55th An-
nual IEEE Symposium on Foundations of Computer Science, FOCS ’14, pages 464–473,
Washington, DC, USA, 2014. IEEE Computer Society.

[BTGT18] Raef Bassily, Om Thakkar, and Abhradeep Guha Thakurta. Model-agnostic private
learning. In Advances in Neural Information Processing Systems 31, NeurIPS ’18, pages
7102–7112. Curran Associates, Inc., 2018.

[Goo15] Ian Goodfellow. Efficient per-example gradient computations. arXiv preprint
arXiv:1510.01799, 2015.

[JUO20] Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing differentially private
machine learning: How private is private sgd? In Advances in Neural Information
Processing Systems 33, NeurIPS ’20. Curran Associates, Inc., 2020.

[LT19] Jingcheng Liu and Kunal Talwar. Private selection from private candidates. In Pro-
ceedings of the 51st Annual ACM Symposium on the Theory of Computing, STOC ’19,
pages 298–309, New York, NY, USA, 2019. ACM.

[Mir17] Ilya Mironov. Rényi differential privacy. In Proceedings of the 30th IEEE Computer
Security Foundations Symposium, CSF ’17, pages 263–275, Washington, DC, USA, 2017.
IEEE Computer Society.

[MTZ19] Ilya Mironov, Kunal Talwar, and Li Zhang. Rényi differential privacy of the sampled
gaussian mechanism. arXiv preprint arXiv:1908.10530, 2019.

[NRS07] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling
in private data analysis. In Proceedings of the 39th Annual ACM Symposium on the
Theory of Computing, STOC ’07, pages 75–84, New York, NY, USA, 2007. ACM.

[PAE+17] Nicolas Papernot, Mart́ın Abadi, Ulfar Erlingsson, Ian Goodfellow, and Kunal Talwar.
Semi-supervised knowledge transfer for deep learning from private training data. In

7

Proceedings of the 5th International Conference on Learning Representations, ICLR
’17, 2017.

[PSM+18] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar,
and Úlfar Erlingsson. Scalable private learning with PATE. In Proceedings of the 6th
International Conference on Learning Representations, ICLR ’18, 2018.

[PTS+20] Nicolas Papernot, Abhradeep Thakurta, Shuang Song, Steve Chien, and Úlfar Erlings-
son. Tempered sigmoid activations for deep learning with differential privacy. arXiv
preprint arXiv:2007.14191, 2020.

[RMT19] Gaspar Rochette, Andre Manoel, and Eric W Tramel. Efficient per-example gradient
computations in convolutional neural networks. arXiv preprint arXiv:1912.06015, 2019.

[SVK20] Pranav Subramani, Nicholas Vadivelu, and Gautam Kamath. Enabling fast differ-
entially private sgd via just-in-time compilation and vectorization. arXiv preprint
arXiv:2010.09063, 2020.

[TS13] Abhradeep Guha Thakurta and Adam Smith. Differentially private feature selection via
stability arguments, and the robustness of the lasso. In Proceedings of the 26th Annual
Conference on Learning Theory, COLT ’13, pages 819–850, 2013.

[WBK19] Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled rényi
differential privacy and analytical moments accountant. In Proceedings of the 22nd
International Conference on Artificial Intelligence and Statistics, AISTATS ’19, pages
1226–1235. JMLR, Inc., 2019.

8

