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Lecture 15 — Private ML and Stats: Mean Estimation

Prof. Gautam Kamath Scribe: Gautam Kamath

Today, we will study private mean estimation. We will distinguish between estimating the mean
of a dataset, and estimating the mean of the underlying distribution. Note that there are likely to
be many drawings to help exposit the material, so it might be worth consulting the handwritten
notes or the lecture videos.

Binary Mean Estimation

First, let’s start with one of the simplest problems in differential privacy. We want to estimate
the mean of a dataset X1, . . . , Xn where Xi ∈ {0, 1}, i.e., the data is binary. As an example, each
datapoint could represent whether the corresponding individual is male. We will use p̃ = 1

n

∑
Xi

to represent the true empirical mean of the dataset. Since the sensitivity of the mean is 1, this is
easily privatizable via the Laplace mechanism:

p̂ =
1

n

n∑
i=1

Xi + Lap

(
1

εn

)
.

Then a simple application of Chebyshev’s inequality implies that

|p̂− p̃| ≤ O
(

1

εn

)
with reasonable probability.1

This computes the empirical mean of a fixed dataset. But often data comes from some underlying
distribution or population, and we wish to estimate the parameter of this distribution. For our first
example, suppose X1, . . . , Xn are sampled i.i.d. from Bernoulli(p), where 0 ≤ p ≤ 1 is some unknown
parameter which we are trying to estimate. We have that E[Xi] = p, and thus E

[
1
n

∑
Xi

]
= p as

well. The variance Xi is p(1−p), and thus the variance of 1
n

∑
Xi is p(1−p)/n ≤ 1/4n. Chebyshev’s

inequality allows us to conclude that

|p− p̃| ≤ O
(

1√
n

)
with reasonable probability. This describes the difference between the true parameter p and the
empirical mean of the dataset p̃. The calculation above characterizes the error between the empirical
mean of the dataset p̃ and the privatized mean p̂. Combining the two, we get that the error between
the true parameter p and the privatized estimate p̂ is

|p− p̂| ≤ O
(

1√
n

+
1

εn

)
.

1For this lecture, we will be cavalier with concerns of failure probabilities, as they are mostly uninteresting. We
will instead just say that events happen. While I will refer to Chebyshev’s inequality as a method of proving many of
the claims today (due to its simplicity), the Chernoff bound will often give sharper bound on the failure probabilities.
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Stated differently, if

n ≥ O
(

1

α2
+

1

αε

)
,

then |p− p̂| ≤ α.

The 1/α2 term is the non-private estimation cost, and the 1/αε is the additional cost due to privacy.
If ε is a constant (say, ε = 1), then we can see the main cost in the sample complexity is the non-
private cost, and the cost of privacy is a lower order term. That said, this ignores constant factors
which can be relevant in practice.

To summarize: we wish to bound ∣∣∣∣µ− ( 1

n

∑
Xi +N

)∣∣∣∣ ,
where N is the noise added for privacy. Using triangle inequality, we upper bound it by∣∣∣∣µ− 1

n

∑
Xi

∣∣∣∣+

∣∣∣∣ 1n∑Xi −
(

1

n

∑
Xi +N

)∣∣∣∣ ,
where the former is the sampling error, and the latter is the noise error.

Unbounded Data

The result above crucially depended on the data being binary, or at least having bounded range.
We will see in a brief example why this is the case. Suppose we wanted to estimate the mean of a
dataset X1, . . . , Xn where each Xi ∈ R is an arbitrary real number. This is more reasonable in other
settings: suppose a datapoint represents an individual’s height, and we wish to estimate the average
height of the set of individuals. Using p̃ = 1

n

∑
Xi again for the empirical mean of the dataset, we

can now see the sensitivity of the mean is unbounded. Thus, the Laplace mechanism would not be
able to estimate the mean of the dataset to any finite accuracy. In fact, no differentially private
algortihm would be able to – it is possible to formalize this via a packing argument. This is an
issue – frequently, we want to estimate the mean of unbounded datasets. Is this fundamentally
impossible?

The answer is no, and we will use some a priori information about the dataset to do better. For
the height example above, we can say that no human height would be greater than (say) 300 cm.
Thus, we can clip the dataset so that all heights are between 0 and 300 cm. This would allow us to
bound the sensitivity of the empirical mean, and thus we can apply simple private methods such as
the Laplace mechanism. Note that these bounds must be obtained without looking at the dataset
at all – they must be data independent. We will try to exploit this idea in the distributional setting
as well.

Private Parameter Estimation of a Distribution

We more precisely describe the setup for private parameter estimation. We have a datasetX1, . . . Xn,
and we want an algorithm with the following guarantees.
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• Privacy: The algorithm is differentially private, no matter what the dataset is.

• Accuracy: If the data is generated from a distribution which satisfies some assumptions, the
algorithm should be accurate with high probability.

Note that the former requirement is worst-case, whereas the latter is stochastic. This can be
justified for a number of different reasons. One is philosophical in nature: if we, as a data analyst,
are incorrect with our assumptions about the data generation process, we do not want the users’
privacy to be violated as a result. Another reason is technical, as Steinke and Ullman discuss [SU20a,
SU20b], we lose a number of nice properties when we move to average-case definitions of privacy.

Our privacy guarantee is genuinely worst-case in nature. Even if the dataset would arise with
exponentially low, or even zero, probability under the distributional assumptions.

Our accuracy guarantee will depend on certain distributional assumptions. For example, even in
the non-private setting, if we want to estimate the mean of a distribution which generated a dataset
X, we require certain conditions on the unknown distribution. Say, if X was generated i.i.d. from
a Gaussian distribution, the empirical mean would be accurate, whereas if it instead came from a
Cauchy distribution, it would not.2

Univariate Gaussian Estimation

We will first focus on the problem of estimating the mean of a univariate Gaussian distribution.
This might be a reasonable abstraction of the mean height estimation problem described before.
Specifically, we are given a dataset X1, . . . , Xn. We wish to design an ε-differentially private
algorithm which operates on this dataset (we will later move from pure to approximate differential
privacy). If the dataset is generated i.i.d. from N(µ, 1) where |µ| ≤ R is some unknown parameter,
we wish to estimate µ with high probability. While the condition |µ| ≤ R might seem a bit odd,
recall our discussion before on where we must exploit a priori information about the distribution.
If we do not, then packing lower bounds will preclude any finite sample algorithm.

Note that this bound on the magnitude of the mean µ alone does not imply a bound on the mag-
nitude of the datapoints. However, this bound in combination with the distributional assumption
does. With high probability, if we draw n samples from N(µ, 1), they will all lie in the range
[µ−O

(√
log n

)
, µ+O

(√
log n

)
].This is easy to derive using the following Gaussian tail bound:

Pr
X∼N(µ,1)

[|X − µ| ≥ t] ≤ 2 exp

(
− t

2

2

)
.

Setting t =
√

20 log n, this bounds the probability that a single sample falls outside this interval as
2/n10, and by a union bound, the probability that any point falls outside this interval is at most
2/n9. While we chose a generously large value of t = O(

√
log n), in practice choosing t to be a small

constant (say, 3) would suffice, as this interval would contain 99.7% of the datapoints. Combining
this bound with the fact that µ ∈ [−R,R], we can say that all datapoints will be in the range
[−R−O(

√
log n), R+O(

√
log n)] with high probability. All the approaches we describe today will

crucially use this fact.

Given this, let us describe a very simple private estimator of the mean, which does not achieve the
right sample complexity.

2Though technically, the Cauchy distribution doesn’t even have a mean.
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Theorem 1. There exists an ε-differentially private algorithm which estimates the mean of N(µ, 1)
(where |µ| ≤ R) to accuracy α, given

n = Õ

(
1

α2
+
R

αε

)
samples.

Proof. Consider the following two-step procedure.

1. Clip the dataset to the range [−R−O(
√

log n), R+O(
√

log n)]: if any Xi lands outside this
range, move it to the closest endpoint of this interval.

2. Compute 1
n

∑
Xi + Lap

(
2R+O(

√
logn)

nε

)
.

It is clear that this statistic is ε-differentially private: due to the clipping step, the sensitivity of

the empirical mean 2R+O(
√
logn)

n , and privacy follows by the Laplace mechanism. Let us now reason
about the accuracy. First, as argued before, if the data is actually from a Gaussian that satisfies
our assumptions, the clipping step will not change any point in the dataset, as they will already
satisfy these bounds. We use µ for the true mean of the distribution, µ̃ for the true mean of the
dataset, and µ̂ for the output of this algorithm. First, we quantify the non-private error:

|µ̃− µ| ≤ O
(

1√
n

)
.

This can be seen using a very similar analysis as the Bernoulli case earlier in this lecture. As for
the additional error due to privacy, we have

|µ̃− µ̂| =
∣∣∣∣Lap

(
2R+O(

√
log n)

nε

)∣∣∣∣ ≤ O( Rnε
)
.

Putting the two together gives

|µ− µ̂| ≤ O
(

1√
n

+
R+O(

√
log n)

nε
.

)
Upper bounding the right-hand side by α, we require that n ≥ Õ

(
1
α2 + R

αε

)
, as claimed.

Another view of this proof, in language similar to before: we wish to bound∣∣∣∣µ− ( 1

n

∑
f(Xi) +N

)∣∣∣∣ ,
where f is the function that clips a datapoint to the interval [−R−O(

√
log n), R+O(

√
log n)], and

N is the noise added for privacy. Using triangle inequality, we upper bound it by∣∣∣∣µ− 1

n

∑
Xi

∣∣∣∣+

∣∣∣∣ 1n∑Xi −
1

n

∑
f(Xi)

∣∣∣∣+

∣∣∣∣ 1n∑ f(Xi)−
(

1

n

∑
f(Xi) +N

)∣∣∣∣ .
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The first term is the sampling error (which is O(1/
√
n)) and the last term is the noise error (which

is Õ(R/nε)), but the middle term quantifies the bias introduced due to the clipping procedure.
In this case, we set the clipping interval to be wide enough that no bias is introduced with high
probability (this will be the case throughout the lecture, until the end when we talk about heavy-
tailed distributions).

We can see that the additional cost due to privacy, R/αε, can be significant if R is large. For
instance, if we have only a very poor guess about the range in where our data lies (for example, if it
were a quantity less familiar than human heights), then this cost might overwhelm the non-private
cost. Thus, our goal is to reduce this cost.

We will provide two different proofs of the following theorem.

Theorem 2. There exists an ε-differentially private algorithm which estimates the mean of N(µ, 1)
(where |µ| ≤ R) to accuracy α, given

n = Õ

(
1

α2
+

1

αε
+

logR

ε

)
samples.

There is actually a third proof of this, which uses the exponential mechanism in place of the
histogram-based approach in the next section, but we don’t go into details of that today.

Observe that the first two terms in this sample complexity are the same as the simple problem
of privately estimating the parameter of a Bernoulli distribution. The last term, logR

ε , is the cost
due to error in our a priori knowledge about the dataset. We have reduced the cost from linear to
logarithmic in R, which is an exponential improvement – this proves to be significant improvement
in practice, as we will see later. Note that all the terms in the statement are tight up to logarithmic
factors. The first term is well known to be the non-private sample complexity, while the latter two
can be proven via packing lower bounds.

Histogram-based Approach

This method is due to Karwa and Vadhan [KV18]. The procedure can be divided into two parts.

First, we obtain a coarse estimate of the mean, a step which necessitates the n = Õ
(
logR
ε

)
term in

the sample complexity. Then we exploit this coarse estimate to get the final fine estimate, which
incurs the n = Õ

(
1
α2 + 1

αε

)
.

The first step splits the range [−R−O(
√

log n), R+O(
√

log n)] into O(R/
√

log n) ≤ O(R) intervals
of width O(

√
log n). The intuition is N(µ, 1) should assign significant probability mass to at most

one or two of these intervals, and all others should have negligible mass. In particular, one of them
should have at least (roughly) n/2 datapoints in it, and all others should have roughly 0 points.
We will use a private histogram to find which of the intervals has the most points. Recall that
this approach adds Lap(1/ε) noise to the number of points which falls into each interval, and then

outputs the maximum. This incurs a maximum error of O
(
logR
ε

)
to any count when there are

R bins. In order to locate a bin with at least n/2 points, it suffices that n/2 − logR/ε � 0, or

n ≥ O
(
logR
ε

)
. Therefore, the interval with the maximum private count will either contain the
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mean, or be next to it – we can simply return the interval with the maximum, combined with the
interval on either side.

We can summarize this step with the following lemma:

Lemma 3. There exists an ε-differentially private algorithm which outputs an interval I which

contains the mean of N(µ, 1) (where |µ| ≤ R), as long as n ≥ Õ
(
logR
ε

)
. The width of the interval

I is at most O(
√

log n).

At this point, we can just run the algorithm which achieves the guarantees of Theorem 1. Note that
we effectively reduced the problem to itself: while we started with a general value of R, Lemma 3
reduces this to R = O(

√
log n). Let’s unpack this argument. The coarse estimation step gives us an

interval I = [`, `+C
√

log n]: we clip the dataset to the interval [`−C
√

log n, `+2C
√

log n], compute
the empirical mean of the resulting dataset, and add Lap(3C

√
log n/nε) noise to the result. This

gives us the desired sample complexity claimed by Theorem 2. Note that we must set the privacy
budget to ε/2 for each step to achieve an overall ε-DP privacy guarantee.

This approach is nice, but it relies heavily upon the private histogram approach, which does not
scale well to (say) the multivariate setting. The one we introduce next will be more flexible in these
settings.

Shrinking Confidence Intervals Approach

This method is from Biswas, Dong, Kamath, and Ullman [BDKU20]. The approach is rather
simple, relying on nothing except the basic Laplace mechanism. Rather than having a coarse and
a fine estimate step, we instead make gradual refinements, iteratively reducing the width of our
interval containing the mean.

Consider the naive method given above, which clips the data to some interval and noises the result.
We will extend that approach, with the addition of a final step which returns a new confidence
interval, rather than just outputting a point. We start with an interval [−R,R] which contains the
mean µ.

1. Clip the dataset to the range [−R−O(
√

log n), R+O(
√

log n)]: if any Xi lands outside this
range, move it to the closest endpoint of this interval.

2. Compute Z = 1
n

∑
Xi + Lap

(
2R+O(

√
logn)

nε

)
.

3. Return an interval centered at Z, of width O
(

1√
n

+ R+
√
logn

nε

)
.

The idea is that if we wanted the result of step 2 to be highly accurate, we would need a significant
amount of data. But just a little bit of data gives us a narrower interval than we started with.

Claim 4. If n ≥ O
(
1
ε

)
and R ≥ C

√
log n for some absolute constant C, then the interval returned

will be a constant factor smaller than the initial interval. Also, if the data is truly Gaussian, then
this interval will contain the true mean µ with high probability.
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Proof. The former claim is easy to see, just by inspecting the first and the last line. The original
interval is of width 2R, and the final interval is of width O(1/

√
n + (R +

√
log n)/nε). Choosing

n ≥ O(1/ε) (with a sufficiently large hidden constant) would result in an interval of width at most
(R+

√
log n)/100, which indeed makes a constant factor improvement if R ≥ C

√
log n.

The trickier part is to see why exactly we did this: if Z had no error introduced due to the sampling
process and the noise, then Z would be a perfect estimate of the true mean µ. Let us instead try
to account for this error:

|Z − µ| =
∣∣∣∣ 1n∑Xi + Lap

(
2R+O(

√
log n)

nε

)
− µ

∣∣∣∣
≤
∣∣∣∣ 1n∑Xi − µ

∣∣∣∣+

∣∣∣∣Lap

(
2R+O(

√
log n)

nε

)∣∣∣∣
Exactly as we argued before, these two terms are bounded by O

(
1√
n

)
and O

(
R+
√
logn

nε

)
, respec-

tively, with high probability. Thus, if we draw an interval around Z of width equal to the sum of
these terms, it will contain µ with high probability.

This claim states that a single iteration results in a constant factor reduction in the width of the
interval. Repeating this t = Õ(logR) times would result in an interval of constant width. Note that
by basic composition, this would result in an overall privacy expenditure of tε – we must rescale
the value of ε by a factor of O(t) in order to maintain a privacy budget of ε. This results in the

requirement that n ≥ O
(
1
ε

)
becoming n ≥ O

(
logR
ε

)
.

At this point, we could simply run Theorem 1, with a value of R = O(
√

log n). This is exactly what
we did before, in the histogram-based approach. This gives us the other two terms in the sample
complexity, Õ(1/α2 + 1/αε), completing the proof.

Beyond Univariate Gaussians

The approach we described is quite flexible. Let’s try to describe it abstractly, and see what
exactly we needed. The core idea is to constantly maintain a confidence interval which contains
the unknown parameter of interest. This is initialized to be our a priori knowledge about the
parameter – in the univariate mean estimation case, it would be the interval [−R,R].

1. Clip the data. Do this based on the confidence interval containing the parameter, combined
with the tail bounds of the distribution class.

2. Compute the empirical estimator for the quantity, and add noise proportional to the sensitivity
(which should be bounded due to clipping).

3. Define a new confidence interval centered around this estimate, with a width based on the
sampling error and the noise added.

4. Repeat.

Let’s see how our univariate mean estimation fits into this framework. We first clip the data. This
was done based on the confidence interval containing our parameter (µ ∈ [−R,R]), and tail bounds
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on the class of interest (no sample from a Gaussian will land further than O(
√

log n) away from its
mean).

Next, we simply compute and noise the empirical mean of the dataset. The magnitude of the noise
is based on the sensitivity, which is restricted based on the width of the confidence interval.

Finally, we have to quantify the error introduced by both the sampling and the noise for privacy.
Specifically, how wide are the confidence intervals for both types of error? The former can be
quantified by Gaussian tail bounds (using the fact that the average of Gaussians is also a Gaussian),
and the latter by Laplace tail bounds.

We state a theorem for the multivariate case, and sketch how the same framework can be used to
get near-optimal sample complexity in these cases as well.

Theorem 5. There exists an (ε, δ)-differentially private algorithm which estimates the mean of
N(µ, I) (where ‖µ‖2 ≤ R) to `2-accuracy α, given

n = Õ

(
d

α2
+
d
√

log(1/δ)

αε
+

√
d logR log(1/δ)

ε

)

samples.

Note that it shifts from pure DP to approximate DP, which is common in the multivariate case.
The `2-sensitivity is more natural in these settings, so we generally use the Gaussian mechanism.

The data is again clipped using the confidence set containing the mean, as well as Gaussian tail
bounds. This time, rather than an interval, the mean µ is in an `2 ball of radius R. Furthermore,
given n samples from a Gaussian in d dimensions, it is well-known that the largest point will have
`2-norm Θ(

√
d+
√

log n). Thus, we can clip to the ball of radius τ = O(R+
√
d+
√

log n).

We then compute the empirical estimator for the mean. Due to the clipping, the `2-sensitivity is
bounded by τ , and we can apply the Gaussian mechanism.

Finally, we quantify how wrong the privatized estimate could be, and draw a ball around it. Since
both the data and the noise are Gaussian, this again follows by (multivariate) Gaussian tail bounds.

Loosely speaking, it says the ball will be of radius O
(√

d · R+
√
d+
√
logn

nε

)
– as long as n ≥ Õ(

√
d/ε),

we make a constant factor improvement (in the right parameter regime). Repeating this logR times
(and rescaling the ε parameter appropriately) gives the requirement n ≥ Õ(

√
d logR/ε). This will

reduce the radius of the ball to Õ(
√
d), and at this point, a naive estimator (similar to Theorem 1)

will give the result claimed in Theorem 5.

There is a similar result for Gaussian covariance estimation, but it’s probably beyond the scope of
these lecture notes.

Heavy-Tailed Data

So far, we’ve discussed only Gaussian data, which can be a very strong assumption for data in the
real world – there are many cases where we might not have our data fall into such a nice parametric
class. The same arguments also hold for sub-Gaussian distributions. Informally speaking, these
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are distributions whose tails decay faster than than of a Gaussian distribution. This implies that
we have bounds on all the moments of the distribution: E[(P − µ)k] is bounded for all k.

However, this is frequently not the case in practice, where data may be heavy tailed. Consider
a simple case where all we know about an unknown distribution is that µ = E[P ] ∈ [−1, 1]
(intentionally chosen to be narrow to simplify the setting) and E[(P − µ)2] ≤ 1, and we wish
to privately estimate µ. As we will see, the lack of bounded moments will require us to clip much
more aggressively: our previous strategy of not clipping any point will introduce far too much noise.

We will find it helpful to recall the way we decomposed the error:∣∣∣∣µ− 1

n

∑
Xi

∣∣∣∣+

∣∣∣∣ 1n∑Xi −
1

n

∑
f(Xi)

∣∣∣∣+

∣∣∣∣ 1n∑ f(Xi)−
(

1

n

∑
f(Xi) +N

)∣∣∣∣ .
Recall that the three terms are the error due to sampling, bias from clipping, and noise addition
for privacy. Before, our strategy was to choose the clipping function f such that the middle term
will be 0. Let’s see what happens if we try that again.

Consider clipping to the interval [−1− τ, 1 + τ ], where τ is some parameter to be set. Chebyshev’s
inequality on P implies that Pr[|P−µ| ≥

√
n] ≤ 1/n, and by a union bound, clipping at τ = Θ(

√
n)

will not affect any points with reasonable probability, and the bias is likely to be 0. However, clipping

at this threshold will introduce an unacceptable amount of noise: one must add Lap
(
O(
√
n)

nε

)
noise.

The errors from sampling, clipping, and privacy will be O(1/
√
n), 0, and O(1/

√
nε), respectively.

Thus, to bound our error by α, we require that n ≥ O
(

1
α2ε2

)
.

Let’s see if there’s an improved way to clip, to have a better balance between these terms. Choosing
a smaller value of τ will introduce some non-zero bias, but reduce the magnitude of noise addition.
We will not prove it here, but it turns out that a clipping parameter of τ introduces bias of order
1/τ : ∣∣∣∣ 1n∑Xi −

1

n

∑
f(Xi)

∣∣∣∣ ≤ O(1/τ).

At the same time, a clipping parameter of τ requires us to add Lap
(
O(τ)
nε

)
noise. This time, the

sampling, clipping, and privacy errors are O(1/
√
n), O(1/τ), and O(τ/nε). Bounding the sum of

errors by α, the best setting of parameters is τ = Θ(1/α) and n ≥ O
(

1
α2ε

)
. Note that this is more

expensive than the O(1/α2 + 1/αε) when we had sub-Gaussianity, and the result turns out to be
tight. There are also further extensions to when we have bounds on higher order moments, and in
the multivariate setting [KSU20].
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