
CS 860: Algorithms for Private Data Analysis Fall 2020

Lecture 17 — Deployments of DP: Local Differential Privacy

Prof. Gautam Kamath Scribe: Gautam Kamath

Today, we begin a series of lectures on deployments of differential privacy. In the first such lecture,
we begin with deployments which operate in the local model of differential privacy.

Local Differential Privacy

For most of this course, we have focused on the central model of differential privacy. In this model,
there is a trusted curator, who may view all the user data in the clear without any privacy concern.
We require that anything that the curator outputs based on the data is appropriately privatized
via differential privacy.

However, in many common use cases, this may not be an acceptable threat model. In particular,
there might not be access to a trusted curator. You could consider the example given at the
beginning of this course, where an instructor is trying to estimate what fraction of their class
cheated on a test. Naturally, an individual would hesitate to share their data with the instructor.
We will see more examples related to IT companies in today’s lecture. In these cases, each individual
should ensure that their own disclosures are differentially private. In some sense, the “trust barrier”
is moved closer to the user. While this has a benefit of providing a stronger privacy guarantee, it
also comes at a cost in terms of accuracy.

To see this in action, let us revisit an example we studied a the beginning of this class. Suppose we
want to estimate the average of a dataset of bits X1, . . . , Xn, that is, µ = 1

n

∑
iXi. In the central

model of differential privacy, we would use the Laplace mechanism:

µ̂ =
1

n

∑
i

Xi + Laplace

(
1

εn

)
.

The noise introduced due to privacy is of magnitude 1/εn, and thus

|µ̂− µ| ≤ 1

εn
.

If we wish to bound this error by α, we require n ≥ 1/αε.

On the other hand, let us consider randomized response, where user i outputs a bit Yi, which is
equal to Xi with probability eε

1+eε , and 1−Xi with probability 1
1+eε . It is easy to see that the user’s

disclosure is ε-DP, just by taking the ratio of these probabilities. The curator (no longer trusted)
can aggregate these responses as follows:

µ̂ =
1

n

∑
i

(
eε + 1

eε − 1
· Yi −

1

eε − 1

)
.

Simple computations reveal that this is an unbiased estimator for µ, and if ε = O(1), the variance
is of order O

(
1

ε2n

)
. By Chebyshev’s inequality, this leads to

|µ̂− µ| ≤ 1

ε
√
n
.

1

If we wish to bound this error by α, we require n ≥ 1/α2ε2.

We can already see a dramatic difference in these two sample bounds. The algorithm in the local
setting requires quadratically more data than the algorithm in the central setting. Unfortunately,
this is intrinsic: it is possible to show that both of these sample complexity bounds are tight up
to constant factors. This translates into significantly worse accuracy in practice: typically, most
deployments require much more data in order to achieve non-trivial accuracy guarantees in the
local model. Indeed, this is the reason why all the deployments we discuss in today’s lecture are at
companies which have access to massive datasets.

There are many interesting technical properties and questions involving local differential privacy.
For instance, the role of interactivity in this setting. In the non-interactive model, there is a single
round in which each user sends (privatized) messages to the curator. In the sequentially interactive
model, based on messages sent by users, the curator can ask new questions to other users, but
each user may only send messages one time. Finally, in the fully interactive model, there are
allowed to be many back and forth interactions between the users and the curator. There are
known separations between all these models, and understanding the full power of each for various
problems is still a mystery which needs to be understood. Another oddity is that there is currently
no known separation between pure and approximate differential privacy in the local model. Indeed,
it can be formalized that they are equivalent in certain settings. All of these technical questions
are fascinating, but unfortunately we do not have time to discuss them during this course.

Historically, randomized response was introduced by Warner in 1965 [War65]. Evfimievski, Gehrke,
and Srikant had a similar definition in 2003 [EGS03]. It was first formulated and explored in the
language of differential privacy by Kasiviswanathan, Lee, Nissim, Raskhodnikova, and Smith in
2008 [KLN+11]. A paper by Duchi, Jordan, and Wainwright is known to have popularized the
notion in various communities [DJW13].

Differential Privacy at Google

We first discuss RAPPOR [EPK14], which was introduced by Google in 2014 and is among the
first major deployments of differential privacy.

Let us first describe one of the problems that arises in their use case. Suppose we’re in the same
situation as before, where we are trying to find how many people cheated on a test. If we simply
ask everyone for their bit once, then simple randomized response works fine. If you simply want to
collect data from an individual once, then simple randomized response works fine. However, what
if you asked the same question to everyone every day? This would be susceptible to what is known
as an averaging attack. For concreteness, let’s fix ε = ln 3, so that a user responds with the truth in
randomized response with probability 3/4. Suppose the output of randomized response was “yes”:
then this would come up with probability 1/4 if the user’s value was “no”, which is fairly high
plausible deniability. On the other hand, suppose you asked the same question for 100 days, and
75 of the responses were “yes”: this would occur with probability only 1.39 × 10−24 if the user’s
value was “no.” This is essentially composition of differential privacy in action: while we started
with ε = ln 3 ≈ 1.1, 100 rounds would result in an overall value of ε = 110. And clearly e110 is a
large number.

To get around this, a strategy known as memoization is employed (not memorization, though it’s

2

kind of the same thing). That is, the user simply re-uses a privatized response every time the
same question is asked. Instead of introducing new randomness each day, they only compute a
randomized response on day 1, and then repeat that value every subsequent day – the adversary
can not learn anything new from these subsequent disclosures. This is not a foolproof system: for
example, an adversary could ask equivalent queries which are phrased in different ways in order to
elicit a new randomized response. But it can work in situations when a system honestly trying to
preserve user privacy is simply asking the exact same query in subsequent days.

The RAPPOR system is illustrated in Figure 1. It works in a more general setting than randomized
response, which only works on a single bit. Instead, a user can have an arbitrary value v in some
domain X , which it then maps to a length-k binary vector B using what is known as a Bloom filter.
More precisely, we have a set of h different hash functions, each of which maps from the domain
X to the set [k] (ideally, uniformly at random). B is then the vector which has a 1 in exactly the
h entries which it maps to. For simplicity, you can think of h = 1, in which B will be a one-hot
encoding of the string v. This would be effective when |X | � k. If |X | is larger, then you would
have hash collisions in which multiple v map to a single B, so in these cases we require multiple
hash functions.

The first step is what is known as a permanent randomized response. Randomized response is
applied bitwise to B, producing a new length-k binary vector B′. The resulting B′ is locally
differentially private with respect to the user’s value v, and is memoized. In the future, whenever
the system queries the value v from the user, they will produce the private representation B′.

There is one additional precaution introduced in RAPPOR. The issue is that a particular B′ is
unlikely to occur for more than one user’s value, thus resulting in it serving as a type of identifier
for the user. Every time the adversary sees a specific value B′, they can be fairly certain that this
is coming from the same user. Note that this is not a privacy violation within the setting of local
differential privacy, which generally assumes that users are associated with the messages they send,
but could be a privacy violation in real-world settings. To help mitigate these type of scenarios, in
which a B′ serves as an ad-hoc identifier, there is one last layer of randomization applied by the
user to their privatized response B′: they apply one more level of bitwise randomized response to
this string. In addition to mitigating the effect of the identifier phenomenon, this also increases
the strength of the local differential privacy guarantee when an adversary can only view a single
response. However, if an adversary is able to view an infinite number of responses, neither of
these will be effective – we will nonetheless fall back on the local DP guarantees provided by the
permanent randomized response.

The RAPPOR system has a way of aggregating these reports, which is somewhat similar to the
standard randomized response method but more sophisticated. We don’t get into the details in
this lecture.

To provide one case which RAPPOR explicitly can not handle, is when the values in subsequent
reports do differ, but only by a small amount. As one example, suppose you ask each user their
age in days, every day. RAPPOR would have to generate a new B for every such query, and lose
the guarantees of the permanent randomized response would be lost. We will see ways of getting
around this in the Microsoft solution [DKY17].

RAPPOR was deployed as part of Google Chrome, in order to monitor various aggregate statistics
of users. One example mentioned in the paper is when malware hijacks and modifies a user’s
machine, changing settings such as their Internet browser’s homepage or search engine. Google has

3

Figure 1: Figure from [EPK14], demonstrating the RAPPOR system.

an opt-in feature whereby users can report these statistics, which are appropriately privatized using
RAPPOR. In the paper, they present a histogram of statistics on which Google Chrome homepages
are most popular, barring common or expected ones. As another example, they also investigate
presence of various processes on Windows computers, some of which may be malicious.

Differential Privacy at Apple

Apple is another high-profile adopter of local differential privacy [Dif17]. We proceed to describe
some features of their deployment.

Their architecture is displayed in Figure 2. In addition to their LDP randomization (which we
will discuss shortly), they employ other methods to ensure user privacy. Some features include
delays in transmission of messages, random subsampling of generated messages, de-identification
including removal of IP addresses, and TLS encryption. There is a limit on the amount of pri-
vacy budget which can be expended per day. That said, at roughly the same time as Apple
described their deployment, some researchers investigated and criticized the parameters of their
deployment [TKB+17].

Most of the algorithms described the Apple white paper are based around the celebrated Count
Sketch algorithm, by Charikar, Chen, and Farach-Colton [CCFC02]. This is a well-known technique
used for counting freqencies of items within a stream, and it is a method that is particularly
convenient for privatization. One factor that was not discussed in the RAPPOR paper is the
communication cost of a procedure. Ideally, to reduce the burden on individual users, we would
like to minimize the amount of data that the user must send. The paper presents a version of this
algorithm which only requires the user to send a single bit to the server. We will discuss more
about communication efficient algorithms in the next deployment we investigate.

One feature of the Apple deployment that RAPPOR does not support is the ability to discover
new words, which were not previously in the dictionary. Recall when discussing RAPPOR, each
value would be hashed by a number of functions (i.e., passed through a Bloom filter) in order to
generate a representation as a k-bit binary string. In order to discover the frequency of a specific
value, one would need to discover the corresponding string, which is not possible if the value wasn’t
known beforehand. To discover, say, new strings of length 10, one would have to enumerate over
2610 possibilities, which would be prohibitively expensive and also result in false positives for many
strings that weren’t in the dataset.

4

Figure 2: Figures from [Dif17], illustrating their architecture.

The Apple DP paper uses a new approach which they term the Sequence Fragment Puzzle, which
gets around this by breaking longer words into short sub-strings, which we can enumerate over.
In some more detail, their approach can be visualized in a two stage process: in the first stage,
new words which occur frequently are discovered, and in the second stage, the frequencies of these
words are computed. The second stage is standard, so we describe only the first stage. Succinctly
speaking: a word is broken up into (short) substrings, and the client sends a random substring
concatenated with a hash of the overall string (which they call the “puzzle piece”) (privatized),
along with the index at which the substring starts (not privatized). Once these are transmitted,
the server can discover (for each index) which substring/puzzle piece pairs are common (if we use
a hash function which maps to a limited range, then we can enumerate over all possibilities since
the substrings are short), and match up substrings which share the same puzzle pieces.

Let’s do a quick example. Suppose we wish to privately transmit the word “waterloo,” which a
function (which maps to the range 0 through 255) hashes to the value 42. We would then send
one of the following four messages, chosen uniformly at random: (1,wa,42), (3,te,42), (5,rl,42),
(7,oo,42). While the index in the first entry of the tuple is transmitted in the clear (and in fact is
not data dependent), the other two elements of the tuple are privatized. If enough people send the
word “waterloo,” then the server will observe that all four of those messages occur frequently – note
that there are only 262 possibilities for the substring and 255 values for the hash, which multiply to
172380, which can be enumerated. By matching the strings that have the same puzzle piece 42, it
is clear to see that the new phrase is waterloo, which we can then estimate the frequency of using
a new query.

This specific method was used to discover new words typed by users of Apple devices which were
not previously in Apple’s dictionary. Some examples include abbreviations like “wyd,” “wbu,”
and “idc,” and phrases such as “bruh” and “bae.” Interestingly, they also discovered words such
as “lov” and “th,” which don’t immediately seem to have meaning. However, if one presses the
left-most prediction cell when using an iOS device, it will use the current word verbatim, even if

5

it is not in the dictionary. The speculation is that users were trying to type the words “love” and
“the,” but frequently missed the letter “e” and hit this prediction (which is right above) instead.

Another interesting application is a discovering frequency of emoji usage. Figure 3 demonstrates
emojis used in both English and French, noticing significant differences in usage habits. Other
applications include discovering when users did or didn’t want videos to auto-play on various sites
in the Safari web browser, determining which websites required high energy or memory (also in
Safari), and understanding which health data types are most popular in Apple’s Health app. These
applications are all sensitive in nature, but can be used to improve the user experience when revealed
in a privacy-preserving manner.

Figure 3: Figures from [Dif17], emoji usage in English versus French.

Differential Privacy at Microsoft

Finally, we discuss a deployment of differential privacy by Microsoft, in a paper by Ding, Kulkarni,
and Yekhanin [DKY17]. In particular, we describe their one-bit protocol for mean estimation,
and also their alternative strategy for memoization, which is applicable in more situations than
RAPPOR [EPK14]. Algorithms from this paper have been implemented in Windows 10. They are
used to estimate the amount of time that users spend in various applications.

Low-Communication LDP

Suppose we wish to average a set of numbers in [0,m] under the constraint of ε-LDP. While we have
not discussed it yet in the local setting, the Laplace mechanism is still applicable in this setting.
Specifically, if a user has a point Xi ∈ [0,m], they can transmit Xi plus Laplace noise proportional
to m/ε, where m is the sensitivity of each user’s datapoint. The curator then averages these results
to obtain an estimate of the mean:

µ̂ =
1

n

∑
i

(Xi + Laplace(m/ε)) .

Taking the difference between the estimated mean and the true mean, we get

µ̂− 1

n

∑
i

Xi =
1

n

∑
i

Laplace(m/ε),

6

and the standard deviation of this error is O
(

m
ε
√
n

)
. Duchi, Jordan, and Wainwright proved that

this error is optimal for this setting [DJW13]. However, the downside is that is somewhat wasteful
when it comes to the amount of communication – most values transmitted by users will be of
order Ω(m) (due to the magnitude of the noise), thus requiring Ω(logm) bits of communication.
In this paper, the authors provide an algorithm for the same problem which requires only one bit
of communication per user.

Each user takes their value Xi, and transmits a message Yi which is equal to 1 with probability
1

eε+1 + Xi
m ·

eε−1
eε+1 , and 0 otherwise. Observe that this only requires a user to commit a single bit,

rather than the Ω(logm) bits before. The curator then compute the following estimate for the
mean:

µ̂ =
m

n

∑
i

Yi · (eε + 1)− 1

eε − 1

It is not hard to see this is unbiased:

E [µ̂] =
m

n

∑
i

E[Yi] · (eε + 1)− 1

eε − 1

=
m

n

∑
i

(
1

eε+1 + Xi
m ·

eε−1
eε+1

)
· (eε + 1)− 1

eε − 1

=
1

n

∑
i

Xi

A little more effort (via a Chernoff bound) shows that the error is O
(

m
ε
√
n

)
. This is the exact same

as the Laplace mechanism, but requires much less communication. This is a common resource in
LDP algorithm analysis: beyond just trying to optimize the error or amount of data, one can also
try to simultaneously minimize the communication.

Memoization

Recall in the RAPPOR paper [EPK14], they used memoization: if the user is requested to send
the same value multiple times, they privatize the value only once and re-send the same result. This
may not be realistic in certain settings, as values are unlikely to be the exact same for multiple
time periods. For example, if the statistic of interest is the amount of time spent in an application
per day, this is highly unlikely to be the exact same value, but it may vary only a small amount –
say, if times only differ by 15 minutes daily.

One simple solution is to appropriately discretize the range of values and round to the center of each
bin, but this raises a dilemma. If we create too many bins (discretizing too finely), the user would
have to re-randomize for small fluctuations in their value. If we create too few bins (discretizing
too coarsely), users would incur significant error when they round to the center of each bin. The
authors provide a randomized rounding scheme which allows them to eliminate the latter concern,
allowing them to use a coarse discretization but avoid the corresponding error.

We describe a specific instantiation of their scheme. At the start of the process, each user i pre-
computes and memoizes the result of running the above 1-bit mean estimation algorithm, as if
their value was 0, and as if their value was m. Denote these results Ai(0) and Ai(m). User i also

7

selects an offset αi ∈ {0, . . . ,m − 1} uniformly at random. Then, if user i’s value for a request is
xi ∈ [0,m], and xi + αi ≤ m, then they output Ai(0). Otherwise, that implies xi + αi > m, and
they output Ai(m). The authors show that this algorithm enjoys the same accuracy guarantees as
the simple 1-bit mean estimation algorithm described above.

To give one concrete benefit of this approach as compared to RAPPOR: recall the query we men-
tioned earlier, where a user is asked for their age each day. The RAPPOR paper said that this
query could not be supported, as it would trigger many LDP randomizations. However, with the
solution in this paper, the output would be appear as a sequence of Ai(0)’s followed by a sequence
of Ai(m)’s – this only reveals when the user’s age passes m − αi, which is private based on the
user’s random choice of αi.

References

[CCFC02] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. In Proceedings of the 29th International Colloquium on Automata, Languages,
and Programming, ICALP ’02, pages 693–703, 2002.

[Dif17] Differential Privacy Team, Apple. Learning with privacy at scale. https:

//machinelearning.apple.com/docs/learning-with-privacy-at-scale/

appledifferentialprivacysystem.pdf, December 2017.

[DJW13] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. Local privacy and statisti-
cal minimax rates. In Proceedings of the 54th Annual IEEE Symposium on Foundations
of Computer Science, FOCS ’13, pages 429–438, Washington, DC, USA, 2013. IEEE
Computer Society.

[DKY17] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data pri-
vately. In Advances in Neural Information Processing Systems 30, NIPS ’17, pages
3571–3580. Curran Associates, Inc., 2017.

[EGS03] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting privacy
breaches in privacy preserving data mining. In Proceedings of the 22nd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’03, pages
211–222, New York, NY, USA, 2003. ACM.

[EPK14] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: Randomized aggre-
gatable privacy-preserving ordinal response. In Proceedings of the 2014 ACM Conference
on Computer and Communications Security, CCS ’14, pages 1054–1067, New York, NY,
USA, 2014. ACM.

[KLN+11] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and
Adam Smith. What can we learn privately? SIAM Journal on Computing, 40(3):793–
826, 2011.

[TKB+17] Jun Tang, Aleksandra Korolova, Xiaolong Bai, Xueqiang Wang, and Xiaofeng Wang.
Privacy loss in Apple’s implementation of differential privacy on MacOS 10.12. arXiv
preprint arXiv:1709.02753, 2017.

8

https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf
https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf
https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf

[War65] Stanley L. Warner. Randomized response: A survey technique for eliminating evasive
answer bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

9

