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Lecture 3 — Intro to Differential Privacy
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In this lecture, we will introduce differential privacy. We start with perhaps the first differentially
private algorithm, by Warner from 1965 [War65].

Randomized Response

We work in a very simple setting. Suppose you are the instructor of a large class which has an
important exam. You suspect that many students in the class cheated, but you aren’t sure. How
can you figure out what fraction of students cheated? Naturally, students would not be likely to
honestly admit that they cheated.

Being a bit more precise: there are n people, and individual ¢ has a sensitive bit X; € {0,1}.
They would like to ensure that no one else learns the value of X;. Each person sends the analyst a
message Y;, which may depend on X; and some random numbers which the individual can generate.
Based on these Y;’s, the analyst would like to get an accurate estimate of p = %Z?:l X;.

We can first start with the most obvious approach: individual i sends Y; equal to the sensitive bit
X;. Foreshadowing, we write this in the following unconventional manner:

)X with probability 1
! 1—X; with probability 0
It is clear that the analyst can simply obtain p = %Z?:l Y:, and that p = p exactly. In other
words, the result is perfectly accurate. However, the analyst sees Y;, which is equal to X;, and thus
she learns the individual’s private bit exactly: there is no privacy.

Consider an alternate strategy, as follows:

Vi — X; with probability 1/2
’ 1—X; with probability 1/2

In this case, Y; is perfectly private: in fact, it is a uniformly bit which does not depend on X; at all,
so the curator could not hope to infer anything about X; from seeing it. But by the same token,
this approach loses all sort of accuracy: Z = L5 Y is distributed as 1Binomial(n,1/2), which
is completely independent of the statistic Z.

At this point, we have two approaches: one which is perfectly accurate but not at all private, and
one which is perfectly private but not at all accurate. The right approach will be to interpolate
between these two extremes.

Consider the following strategy, which we will call Randomized Response, parameterized by some
v €10,1/2]:
X with probability 1/2 4 ~
" ]1-X; with probability 1/2 —~



How private is this message Y;, with respect to the true message X;? We haven’t built the tools
to formally quantify this yet, so we’ll be a bit informal for the time being. Note that v = 1/2
corresponds to the first “honest” strategy, and v = 0 is the second “uniformly random” strategy.
What if we choose a 7 in the middle, such as v = 1/4? Then there will be a certain level of
“plausible deniability” associated with the individual’s disclosure: while Y; = X; with probability
3/4, it could be that their true bit was 1 — Y7, and this event happened with probability 1/4.
Informally speaking, how “deniable” their response is corresponds to the level of privacy they are
afforded. In this way, they get a stronger privacy guarantee as v approaches 0.

Let’s put this aside for now, and focus on how accurate an estimate the analyst can obtain. Observe
that
EY;] =2vX; +1/2 -,

and thus )
E|l— (Y, —-1/2+ = X;.
[27( / ’Y)]

This leads to the following natural estimator:

P2 [ -]

The above calculation gives that E[p] = p. Next, we analyze the variance of p:

1 — 1
= — Var |Y;| < .
4y2n? ; ar[Vi] < 1692n

Var[p] = Var [:L Zn: [217 (Yi—1/2+ fy)]

i=1

The last inequality is due to the fact that the variance of a Bernoulli random variable is upper
bounded by 1/4. At this point, we can apply Chebyshev’s inequality to obtain

1
—pl <O —=).
p=pl=0 <%/ﬁ )
This can also be obtained with high probability via a Chernoff bound.! As n — oo, this error
goes to 0. An alternative way of wording this: if we wish to have additive error «, we require
n = O(1/a?y?) samples. Note that as 7 gets closer to 0 (corresponding to stronger privacy), the
error increases (or, with the second phrasing, the sample complexity). This is natural: the stronger
the privacy guarantee we would like, the more data we require to achieve the same accuracy.

In order to proceed further in quantifying the level of privacy, we must (finally) introduce differential
privacy. At its core, differential privacy is a broad formalization of this aforementioned notion of
“plausible deniability.”

Differential Privacy

In security and privacy, it is important to be precise about the precise setting in which we are
working. We now define the setting for differential privacy, sometimes called central differential

Mf you are not familiar with either the Chebyshev or Chernoff bound and the argument that we are applying here,
it is important that you look it up and work out the details.



privacy or the trusted curator model. We imagine there are n individuals, X; through X,,, who each
have their own datapoint. They send this point to a “trusted curator” — all individuals trust this
curator with their raw datapoint, but no one else. Given their data, the curator runs an algorithm
M, and publicly outputs the result of this computation. Differential privacy is a property of this
algorithm M ,? saying that no individual’s data has a large impact on the output of the algorithm.

More formally, suppose we have an algorithm M : X™ — ). Consider any two datasets X, X' € X"
which differ in exactly one entry. We call these neighbouring datasets, and sometimes denote this
by X ~ X’. We say that M is e-(pure) differentially private (e-(pure) DP) if, for all neighbouring
X, X', and all T C Y, we have

Pr[M(X) e T) < € Pr[M(X’) € T},

where the randomness is over the choices made by M.

This definition was given by Dwork, McSherry, Nissim, and Smith in their seminal paper in
2006 [DMNSO06]. It is now widely accepted as a strong and rigorous notion of data privacy. It
has received acclaim in theory, winning the 2017 Godel Prize, and the 2016 TCC Test-of-Time
Award. At the same time, it has now seen adoption in practice at many organizations, includ-
ing Apple [Dif17], Google [EPK14], Microsoft [DKY17], the US Census Bureau for the 2020 US
Census [DLS'17], and much more.

Differential Privacy is an unusual sounding definition the first time you see it, so some discussion
is in order.

e Differential privacy is quantitative in nature. A small ¢ corresponds to strong privacy, de-
grading as € increases.

e ¢ should be thought of as a small-ish constant. Anything between (say) 0.1 and 5 might be a
reasonable level privacy guarantee (smaller corresponds to stronger privacy), and you should
be slightly skeptical of claims significantly outside this range.

e This is a worst-case guarantee, over all neighbouring datasets X and X’. Even if we expect our
data to be randomly generated (and some realizations are incredibly unlikely), we still require
privacy for all possible datasets nonetheless. While there do exist some notions of average-case
privacy, these should be approached with caution — Steinke and Ullman write a series of posts
which warn about the pitfalls of average-case notions of differential privacy [SU20a, SU20b].

e In words, the definition bounds the multiplicative increase (incurred by changing a single
point in the dataset) in the probability of M’s output satisfying any event.

e The use of a multiplicative e® in the probability might seem unnatural. For small ¢, a Taylor
expansion allows us to treat this as ~ (1 4+ ¢). The given definition is convenient because
of the fact that e°! - €2 = €722 which is useful when we examine the property of “group
privacy” later.

e While the definition may look asymmetric, it is not: one can simply swap the role of X and
X'

*In differential privacy lingo, an algorithm is sometimes (confusingly) called a “mechanism.”



e Convince yourself that any non-trivial (i.e., one that is not independent of the dataset) dif-
ferentially private algorithm must be randomized.

e One might consider other notions of “closeness” of the distributions of M (X) and M(X').
The given definition says the probability of any event is multiplicatively close. But at a glance,
the statistical or total variation distance might also seem reasonable — essentially converting
the multiplicative guarantee to an additive one. But this alternative notion would not give
meaningful guarantees; we don’t get into this here, but see Section 1.6 of [Vadl7]| for more
discussion.

e Finally, we will generally use the notion “neighbouring datasets” where one point in X is
changed arbitrarily to obtain X’. This is sometimes called “bounded” differential privacy,
in contrast to “unbounded” differential privacy, where a point is either added or removed.
In theory, these notions are equivalent up to a factor of 2, as an arbitrary change can be
performed by removing one point and adding another. This can be formalized later, once
we study the notion of group privacy. The former definition is usually more convenient
mathematically.

That’s it for technical comments on the definition.

As a brief interlude, let’s discuss an alternative formulation of differential privacy in terms of
hypothesis testing, due to Wasserman and Zhou [WZ10], and also explored by [KOV15, BBG™20].

This phrasing is slightly more “operational” in nature, viewing things from the perspective of
an adversary. Specifically, suppose the adversary is trying to decide between the following two
scenarios, where X and X’ are neighbouring datasets, and one of the two is guaranteed to hold:

Hj : the underlying dataset is X

Hj : the underlying dataset is X’

Using statistics terminology, these are called the null and the alternate hypothesis, respectively.
Based on the output of some algorithm M which is run on the dataset, the adversary is trying
to determine whether Hy or Hj is true. Intuitively, differential privacy says that the adversary
shouldn’t be to get significant advantage over randomly guessing. The actual guarantee is slightly
more refined — for example, they could simply guess Hy every time, and they would always be
right when Hj is true (compared to probability 1/2 by random guessing). Specifically, let p be
the probability that the adversary predicts H; when Hy is true (a “false positive”) and ¢ be the
probability that the adversary predicts Hy when Hj is true (a “false negative”). e-differential
privacy implies that, simultaneously:
pteqg=>1

ep+qg>1

One can see that, when ¢ = 0, the adversary is essentially restricted to strategies that ignore the
data and guess randomly (potentially in a biased way). As e is increased, it allows the adversary
some possibility of getting some advantage over blind guessing.

Why use this formulation of differential privacy? One reason is that it is more “operational”
in nature, and gives one an alternative quantitative understanding of how well an adversary can
detect the contribution of an individual. It is also used in understanding the privacy guarantees



we get when we run multiple private algorithms on the same dataset [KOV15]. The recent notion
of Gaussian differential privacy [DRS19] also embraces this interpretation, rephrasing the privacy
guarantee in terms of hypothesis testing between two Gaussian distributions.

Let’s take a step back: what does differential privacy mean? Simply repeating the definition:
differential privacy says that, the probability of any event is comparable in the cases when an
individual does or does not include their data in the dataset. This has a number of implications of
what differential privacy does and does not ensure.

First, it prevents many of the types of attacks we have seen before. The linkage-style attacks that
we have observed are essentially ruled out — if such an attack were effective with your data in the
dataset, it would be almost as effective without. This holds true for existing auxiliary datasets,
as well as any future data releases as well. It also prevents reconstruction attacks, in some sense
“matching” the bounds shown in the Dinur-Nissim attacks [DN03], as we will quantify in a later
lecture. In fact, it protects against arbitrary risks, which can be reasoned about by simply revisiting
the fact that any outcome is comparably likely whether or not the individual’s data was actually
included.

Differential privacy does not prevent you from making inferences about individuals. Stated al-
ternatively: differential privacy does not prevent statistics and machine learning. Consider the
classic “Smoking Causes Cancer” example [DR14]. Suppose an individual who smokes cigarettes
is weighing their options in choosing to participate in a medical study, which examines whether
smoking causes cancer. They know that a positive result to this study would be detrimental to
them, as it would cause their insurance premiums to rise. They also know that the study is being
performed using differentially privately, so they choose to participate, and they know their privacy
will be respected. Unfortunately for them, the study reveals that smoking does cause cancer! This
is a privacy violation, right? No: differential privacy ensures that the outcome of the study would
not be significantly impacted by their participation. In other words, whether they participated or
not, the result was going to come out anyway. For more discussion of the compatibility of privacy
and learning, see [McS16].

Differential privacy is also not suitable for the case where the goal is to identify a specific individual,
and this is antithetical to the definition. As a timely example, despite the clamoring for privacy-
preserving solutions for tracking the spread of COVID-19, it is not immediately clear how one could
use differential privacy to facilitate individual-level contact tracing. This would seem to require
information about where a specific individual has been, and which particular individuals they have
interacted with. On the other hand, it might be possible to facilitate aggregate-level tracking, say if
many people who tested positive all attended the same event. In this vein, there is some interesting
work done by Google on DP analysis of location traces, to see which types of locations people spend
more and less time at since COVID-19 struck [ABCT20].

The definition of differential privacy is information theoretic in nature. That is, an adversary
with unlimited amounts of computational power and auxiliary information is still unable to get an
advantage. This is in contrast to cryptography, which typically focuses on computationally bounded
adversaries. There has been some work on models of differential privacy where the adversary is
computational bounded, see, e.g., [BNOOS§].



Randomized Response, Revisited

Design of differentially private algorithms is usually built around a few core primitives. One of
these is randomized response, which we are now equipped to analyze the privacy of.

Now that we have the definition in hand, let’s analyze the differential privacy guarantee when
our algorithm M is randomized response. In fact, we will actually show that the bit-string
M(Xq,...,X,) = (Y1,...,Y,) is differentially private — privacy of our estimate p will follow by
the post-processing property of differential privacy (essentially saying that a function of a differen-
tially private object is also private), which we will discuss next lecture. We consider any particular
realization a € {0,1}" of (Y1,...,Y,). We have that Pr[M(X) = a] =[]}, Pr[Y; = a;]. Suppose
that X and X’ differ only in coordinate j. Then we have that

PriM(X) =a] _ [l PriYi=a] _ PrlYj=a] _1/24+7 _ 00

PrM(X')=da] [[,Pr]Y/ =a)] Pr[Y/=aq;]  1/2—7 ’

J

where the last inequality holds for v (say) smaller than 1/4. Therefore, we have that e-randomized

response is O(¢)-differentially private, and achieves accuracy O (L) Actually, randomized re-

ev/n
sponse provides a stronger privacy guarantee than (central) differential privacy, it provides local
differential privacy, in which individuals trust no one but themselves. This will be the topic of later

lectures.

WEe’ll end here, but next time we will start with the Laplace Mechanism. This is a very flexible
algorithm which applies in more general settings, also achieves e-differential privacy, and much
better accuracy for this task than randomized response.
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