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Lecture 6 — Advanced Composition

Prof. Gautam Kamath Scribe: Gautam Kamath

Today, we finally study the celebrated advanced composition theorem, originally due to Dwork,
Rothblum, and Vadhan [DRV10]. Presentation today is based very heavily upon lecture notes of
Adam Smith [Smi17] (edited mostly to add in my own little notes and comments), which is in turn
based on the work of Kairouz, Oh, and Viswanath [KOV15], see also Section 3.5 of [DR14].

In particular, we prove the following theorem.

Theorem 1 (Advanced Composition). For all ε, δ, δ′ > 0, let M = (M1, . . . ,Mk) be a sequence
of (ε, δ)-differentially private algorithms, where the Mi’s are potentially chosen sequentially and
adaptively. Then M is (ε̃, δ̃)-differentially private, where ε̃ = ε

√
2k log(1/δ′) + kε e

ε−1
eε+1 and δ̃ =

kδ + δ′.

There’s a few points to discuss in this theorem. The second term in ε̃ might seem unusual, but if
we are in the “high privacy” regime where ε is small, then eε−1

eε+1 ≈ ε/2, and thus the second term is

≈ kε2/2, which may be considered as a lower order term for small ε. Also, we have a knob to tweak
via the δ′ – the more we increase it, the smaller the multiplicative factor in ε̃ becomes. Coarsely
and informally speaking, one can think of this as guarantee as saying, if we wish to do k queries
under ε-differential privacy, the cost is a factor of

√
k, rather than k.

As one suggested exercise: revisit the multivariate mean estimation example from the previous
lecture. As we showed, the `2 error by using the Laplace mechanism and Gaussian mechanism was
d3/2/εn and d/εn, respectively. Convince yourself that one could use advanced composition and
the Laplace mechanism to acheive roughly the latter error d/εn, albeit at the cost of relaxing to
approximate differential privacy.

We will prove this theorem via sequence of two steps. First, we will reduce from general mechanisms
to roughly binary ones (more precisely: algorithms which either output a 0, 1, or a blatant privacy
violation). We then analyze the composition of mechanisms in this form.

Reduction to Binary-ish Mechanisms

What is the “simplest” pair of random variables that satisfy the style of “(ε, δ)-DP-esque” guaran-
tees we would like? More precisely: what U, V have the property that |LU ||V | ≤ ε with probability
1− δ and |LV ||U | ≤ ε with probability 1− δ ? Recall that the privacy loss random variable between
A and B is defined by drawing t ∼ A and outputting

LA||B = ln

(
Pr[A = t]

Pr[B = t]

)
.

One candidate pair of random variables is the following, which has type “types” of outcomes: one
to capture “catastrophic failure” with probability δ, and one for the “status quo” eε multiplicative
guarantee. For the former, we will have outcomes that say “I am U” and “I am V ,” and for the
latter we simply use bits 0 and 1. The random variables can be described in the following table:
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t Pr[U = t] Pr[V = t]

0 eε(1−δ)
1+eε

(1−δ)
1+eε

1 (1−δ)
1+eε

eε(1−δ)
1+eε

I am U δ 0

I am V 0 δ

Now, we claim that this “simple” pair of random variables is sufficient to express any pair of random
variables with a bounded privacy loss.

Theorem 2. Let A and B be random variables such that |LA||B| ≤ ε with probability 1 − δ and
|LB||A| ≤ ε with probability 1− δ. Then there exists a randomized mapping F such that F (U) ∼ A
and F (V ) ∼ B.

Essentially, this says that we can first sample from one of the simple distributions (either U or V )
and map this into a sample from one of the more complicated distributions. We do not prove this
here, but claim that it follows by appropriately mapping the four outcomes to the corresponding
subsets of the domain (in some non-uniform way that depends on A and B). Roughly, the outcomes

“I am U ,” 0, 1, and “I am V ” are mapped to points x where L(x) = Pr[A=x]
Pr[B=x] is in the following

ranges, respectively: L(x) > eε, 0 ≤ L(x) ≤ eε, −eε ≤ L(x) ≤ 0, and L(x) < e−ε. But with this
reduction in place, it essentially suffices to examine the behaviour of the privacy loss between U
and V , and the same will be implied for A and B via post-processing.

Now that we can reduce a pair of random variables to studying this simple case, let’s examine
how to reduce from a sequence of differentially private algorithms to a sequence of simple pairs
of random variables. The algorithms M1 through Mk each have domain X n. Since they can be
chosen adaptively, they implicitly also take in a “transcript” of results so far: that is, Mj takes as

input the dataset ∈ X n as well as aj−11 , which is a vector representing the results of computations

M1 through Mj−1. Each Mj is (ε, δ)-DP, for any possibility of the transcript aj−11 . We also fix two
neighbouring datasets X,X ′.

The idea is that, at each step of the process, we apply the mapping implied by the theorem
above. Suppose we have a sequence z1, . . . , zk which is generated i.i.d. from either U or V . For
each j in {1, . . . , k}, we apply Theorem 2, where the inputs are Mj(X) and Mj(X

′) (with the

transcript aj−11 in both cases as well). This will give us a function Fj , such that Mj(X) ∼ Fj(U)
and Mj(X

′) ∼ Fj(V ). Applying this sequentially gives us the following theorem, where F ∗ is the
sequence of functions F1, . . . , Fk.

Theorem 3. There exists a randomized mapping F ∗ such that the algorithm M defined by the
composition of M1, . . . ,Mk has the following two properties:

• M(X) ∼ F ∗(U1, . . . , Uk), where U1, . . . , Uk are drawn i.i.d. from U

• M(X ′) ∼ F ∗(V1, . . . , Vk), where V1, . . . , Vk are drawn i.i.d. from V

At this point, if we can prove that the privacy loss random variable between (U1, . . . , Uk) and
(V1, . . . , Vk) is appropriately bounded, then the post-processing property of differential privacy
(i.e., when we apply F ∗) will imply the same guarantee for M(X) and M(X ′).
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Composition of Binary-ish Mechanisms

At this point, we are left to prove that the absolute value of the privacy loss random variable
between the sequence (U1, . . . , Uk) and (V1, . . . , Vk) is bounded by ε̃ with probability 1 − δ̃. Let
zj be the realization of the jth random variable in this sequence – that is, we can imagine that
each zj ∼ U independently. We will define two events as we go, which will help us partition the
outcomes into different “cases”. Since we’re trying to bound the privacy loss random variable, let’s
first discount the cases where it is “obviously” unbounded. More precisely, if any of the zj is “I am
U ,” then this is an “obvious” privacy violation, which we want to ignore as we proceed. One can
think of these as contributing the kδ term to the expression of δ̃.

E1 = {z : at least one zj is “I am U”}.

We can see that Pr[E1] = 1− (1− δ)k ≤ δk.

For essentially the remainder of the proof, we’re going to condition on Ē1, to avoid the privacy loss
random variable taking an infinite value. Suppose we have some string of outcomes z ∈ {0, 1}k,
which leads to the following realization of the privacy loss random variable:

ln

(
Pr[(U1, . . . , Uk) = z]

Pr[(V1, . . . , Vk) = z]

)
=

k∑
j=1

ln

(
Pr[Uj = zj ]

Pr[Vj = zj ]

)
=

k∑
j=1

ln

(
(1− δ)eε(1−zj)/(eε + 1)

(1− δ)eεzj/(eε + 1)

)
=

k∑
j=1

ε(1−2zj).

The first equality holds because the zj ’s are independent. Note that the privacy loss random
variable is a sum of independent random variables, which take the value either ε or −ε. This is
very convenient for use of the Chernoff bound.

Let’s start by computing the expectation of this random variable, recalling that we are conditioning
on the event Ē1 to ensure z ∈ {0, 1}k.

Ez∼(U1,...,Uk)

[
ln

(
Pr[(U1, . . . , Uk) = z]

Pr[(V1, . . . , Vk) = z]

)
|Ē1

]
= kε · e

ε − 1

eε + 1
.

To see this, observe that if we condition on Ē1, then (1 − 2zj) is 1 with probability eε

1+eε and −1

with probability 1
1+eε (easily derivable using, say, Bayes rule). We note that this term is one of the

terms in ε̃ – the other term will express “how far past the mean” the privacy loss random variable
goes.

In fact, we let E2 denote the event that the privacy loss random variable goes “too far”. Let t > 0
be some parameter we will specify later:

E2 =

{
z ∈ {0, 1}k : ln

(
Pr[(U1, . . . , Uk) = z]

Pr[(V1, . . . , Vk) = z]

)
> kε

eε − 1

eε + 1
+ tε
√
k

}
.

Observe that the right-hand side of this inequality is ε̃, up to the specification of t.

We can use the following Chernoff bound for independent random variables Z1, . . . , Zk in the range
[`, u]:

Pr

 k∑
j=1

Zj ≥
∑

E[Zj ] + τ

 ≤ exp

(
− 2τ2

k(u− `)2

)
.
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In our context, we set [`, u] = [−ε, ε] and τ = tε
√
k, giving

Pr
[
E2|Ē1

]
≤ exp

(
− t

2

2

)
.

At this point, one can observe we “have all the pieces” – we see that if neither E2 nor E1 holds,
then we have a bounded privacy loss. Furthermore, E1 and E2 are both low probability events.
Let us assemble these components in a more rigorous manner.

We first note that Ē1 and Ē2 both hold, then the privacy loss random variable is bounded, giving
the following for any set of outcomes z:

Pr[U = z ∩ Ē1 ∩ Ē2] ≤ eε̃ Pr[V = z ∩ Ē1 ∩ Ē2] ≤ eε̃ Pr[V = z].

The latter inequality is because we require fewer events to occur.

With this in hand,

Pr[U = z] = Pr[U = z ∩ Ē1 ∩ Ē2] + Pr[U = z ∩ E1] + Pr[U = z ∩ Ē1 ∩ E2]

≤ Pr[U = z ∩ Ē1 ∩ Ē2] + Pr[E1] + Pr[E2|Ē1] Pr[Ē1]

≤ eε̃ Pr[V = z] + kδ + exp(−t2/2) · 1.

The first equality is by the law of total probability (you might find it helpful to draw the Venn
diagram of outcomes). The first inequality again requires fewer events to occur. Setting t =√

2 ln(1/δ′) completes the proof.
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