
CS 860: Algorithms for Private Data Analysis Fall 2020

Lecture 8 — Private Multiplicative Weights

Prof. Gautam Kamath Scribe: Gautam Kamath

We describe the setting of linear queries. These are very similar to counting or subset queries
which we have discussed before, but with coefficients in the range [0, 1], rather than {0, 1}. In this
setting, we work on a data universe X = {s1, . . . , s|X |}. A linear query is a function q : X → [0, 1],
and we overload the notation to also refer to the function applied to a dataset: letting X ∈ X n,
q(X) = 1

n

∑
i∈[n] q(Xi). The core question of answering linear queries is the following: suppose we

have a set Q of linear queries. How large does a dataset have to be in order to answer all of them
up to accuracy α under differential privacy? Specifically, we want an algorithm M : X n → [0, 1]|Q|

such that |Mj(X)− qj(X)| ≤ α, and M must be differentially private (either pure or approximate).

What do we know about this problem already? The simplest way to solve this is just to use the
Laplace mechanism, Mj(X) = qj(X) + Lap(|Q|/εn). By basic composition, the overall result will
be ε-differentially private. Furthermore, using a tail bound on Laplace random variables and the

union bound, it is possible to show that we need n = O
(
|Q| log |Q|

αε

)
to attain error α under ε-DP. It

is actually possible to show that this this logarithmic factor can be removed, and that we only need

n = O
(
|Q|
αε

)
[SU17], but this is outside the scope of this class. If we do a similar argument with

the Gaussian mechanism, we get a n = O

(√
|Q| log |Q| log(1/δ)

αε

)
sample complexity under (ε, δ)-DP.

Once again, the logarithmic factors are almost entirely removable [SU17, GZ20] but this is again
beyond the scope of this class.1

The downside is, both of these bounds are polynomial in |Q| – is it possible to do better? There
is a simple histogram-based approach for this problem, which achieves sample complexity n =

O

(√
|X | logQ
αε

)
under ε-DP, described in Theorem 2.9 of [Vad17]. This is great when we have a lot

of queries over a small domain. But the downside is that it now pays polynomially in the size of
the domain, which could potentially be very large. Suppose each individual in the dataset has d
binary features – in this case, the size of the domain is |X | = 2d. Is there an algorithm which pays
poly-logarithmically (at worst) in both parameters?

In today’s class, we will see the celebrated private multiplicative weights algorithm, introduced by
Hardt and Rothblum [HR10], and refined by others [GLM+10, GRU12, HLM12].

Theorem 1. The Private Multiplicative Weights algorithm can answer a set Q of linear queries on

a database of size n to accuracy α under (ε, δ)-DP, given n = Õ

(
log |Q|

√
log |X | log(1/δ)
α2ε

)
datapoints.

This method fits into the very powerful multiplicative weights framework [AHK12], which sees nu-
merous applications across computer science. We cover the non-private method first, and then de-
scribe the application to the differentially private setting. The running time will be Õ(|Q|n|X |/α2)
– this is polynomial time in all parameters, which is not great, but also unavoidable based on
standard cryptographic assumptions [UV11].

1Though if you can remove them entirely, you are eligible to win a free all-you-can-eat sushi dinner [SU19].

1

We comment that, a previous work presents the SmallDB algorithm [BLR13], which has a sample

complexity of n = Õ
(
log |Q| log |X |

α3ε

)
under ε-differential privacy, but the running time is |X |O(log |Q|/α2)

which is rather impractical, so we will not cover it. It’s recommended reading as a nice application
of the exponential mechanism.

(Non-Private) Multiplicative Weights

Let’s start quite distant from differential privacy and answering linear queries.

A Perfect Expert

Suppose you have a set of N (so-called) experts. They all claim to have arcane knowledge which
allows them to predict the future. All of them are lying – except for one. Naturally, you would like
to use their incredible power to choose how to invest in the stock market. Every day t starts by each
expert giving you a prediction pti: either U for up or D for down. Based on this advice, you have
to somehow decide upon your own prediction for that day: U or D. The true signal for the day
st is then revealed: if it doesn’t match your personal prediction, then you make a mistake. Again,
we assume (for now) that there is one expert (whose identity is not known beforehand) whose
prediction always matches the true signal for the day. All other predictions may be arbitrary. This
continues for T days, and the goal is to make as few mistakes as possible.

How well can we do? It turns out pretty well – there’s an algorithm which makes at most logN
mistakes.

Claim 2. There is an algorithm that always makes at most logN mistakes.

The algorithm is simple: in a sentence, every day we predict in concordance with the majority of
experts, and at the end of the day we eliminate everyone who was wrong.

Algorithm 1: An algorithm with a perfect expert

Set S1 = [N]
for t = 1 to T do

Let StU = {i : pti = U} be the set of experts who picked U , and similarly
StD = {i : pti = D}

If |StU | > |StD| then predict U , otherwise predict D
Set St+1 = Stst

end

The claim is that this algorithm makes at most logN mistakes. This is not hard to see by the
following property: either half the experts are right and we don’t make a mistake, or half the
experts are wrong and they get removed. More precisely, if we make a mistake at step t, then
|St+1| ≤ |St|/2. Since we start with N experts, there can only be logN such halvings. Note that
we will never eliminate the last expert, who is always correct.

When we run this strategy, we make at most logN mistakes. On the other hand, the best expert
made 0 mistakes. Accordingly, this is called our regret : how much worse our performance was, in
comparison to the best expert (in hindsight).

2

A Best Expert

This isn’t the most realistic scenario – no one can truly predict the future. We’ll assume that no
there’s no perfect expert, but our goal is relaxed as well: we’re just trying to perform competitively
with the best expert, who makes OPT mistakes. It’s easy to see that the exact same strategy
won’t work. If the best expert is the only one to err on the first round, they could be eliminated
immediately, leaving everyone else to answer incorrectly for all future rounds. As a result, we will
choose a softer strategy: rather than eliminating experts who make a mistake, we just trust their
opinion less. We start with each expert having a weight 1, but each time they err, we divide their
weight by 2. When we make predictions, we go along with the weighted majority.

Algorithm 2: Weighted Majority Algorithm

Set w1
i = 1 for all i ∈ [N]

for t = 1 to T do
Let W t

U =
∑

i:pti=U
wti be the weight of experts who picked U , and similarly

W t
D =

∑
i:pti=D

wti
If W t

U > W t
D then predict U , otherwise predict D

For all i such that pti 6= st, set wt+1
i = 1

2w
t
i

end

This is slightly harder to analyze, but still not bad: we will arrive at the following guarantee.

Claim 3. There is an algorithm that makes at most 2.4(OPT + logN) mistakes.

Observe that we are in some sense competitive with the best expert. That said, it’s still not
perfect: before, we had an additive overhead over the best expert (the regret) of logN . This
time, the difference between the number of mistakes and the number made by the best expert is
1.4OPT + 2.4 logN . We will later see how to get rid of this OPT term in the regret, but for now
let’s analyze this algorithm.

Let W T be the total weight at the end of the process, time T : W T =
∑

iw
T
i . We will upper and

lower bound this quantity to relate OPT and the number of mistakes our algorithm makes, which
we denote M . To get a lower bound on the weight: the best expert makes at most OPT mistakes
– thus, their weight remains at least (1/2)OPT in the worst case, which is a lower bound on the
total weight: (1/2)OPT ≤ W T . On the other hand, we know that every time the algorithm makes
a mistake, the total weight drops by a factor of 3/4: this is because at least half the total weight
corresponds to experts who made a mistake, and their weight is divided by 2. Since the total weight
at the start was N , this gives us the following upper bound: W T ≤ N(3/4)M .

At this point, we just combine the upper and lower bounds and use algebra: (1/2)OPT ≤ N(3/4)M .
Rearranging, we get (4/3)M ≤ N2OPT . Taking the log of both sides gives M ≤ OPT+logN

log(4/3) ≤
2.4(OPT + logN), as desired.

The Multiplicative Weights Algorithm

The previous approaches give us some of the key ideas we need: multiplicatively reward or penalize
experts based on whether they’re right or wrong. We’ll now generalize and strengthen this core
algorithmic idea to achieve the polynomial weights algorithm. Before, each expert was forced to

3

choose one of two actions – now, each can have their own action. Correspondingly, each expert
will experience their own loss at each time step, which is now in [−1, 1] rather than being a binary
“right” or “wrong.”

We have a sequence of T rounds. In each round, the following process occurs:

• The algorithm first chooses some expert it ∈ [N].

• Every expert experiences some loss `ti. The algorithm experiences a loss `tA equal to `tit .

The algorithm’s total loss is LTA =
∑T

t=1 `
t
A, and expert i’s total loss is LTi =

∑T
t=1 `

t
i The goal is

to be competitive with the best expert in hindsight, and minimize the regret: LTA −mini L
T
i .

The algorithm for this case is similar to the weighted majority algorithm. The main differences are
that it selects an expert randomly, and it rescales weights in a more sophisticated way that takes
into account the fact that losses are no longer binary.

Algorithm 3: Polynomial Weights Algorithm

Set w1
i = 1 for all i ∈ [N]

for t = 1 to T do

Let W t =
∑N

i=1w
t
i

Select expert i with probability wti/W
t

Update wt+1
i = wti(1− γ`ti), where γ is some parameter to be set.

end

Since this algorithm is randomized, we no longer give a worst-case bound on the regret, we now
give one in expectation. The guarantees of this algorithm are generally stated in the following form:

Theorem 4. For an arbitrary sequence of losses, and any expert i,

E[LTA] ≤ LTi + 2
√
T lnN

In particular, this holds for the best expert.

Note that this is directly competitive with the best strategy in hindsight, and the regret is minimal:
if there are T rounds, it is on the order of

√
T , making it generally a lower order term.

However, we choose to phrase the guarantees slightly differently – rather than thinking about the
expected loss of a randomly picked expert, we will think of the loss achieved by a distribution over
experts. This will be useful for later applications, in which there may not exist any single expert
who is good against all loss functions that the adversary might throw at them. Consider a game
of rock-paper-scissors: if these three options are your experts, then the only way to do well against
any strategy from your opponent is with randomization.

We rephrase the problem using this new perspective. In each of the T rounds:

• The algorithm first chooses a distribution pt over [N].

• The algorithm experiences a loss `tA equal to `t · pt.

4

Note that this can be seen as a generalization of the previous case, as before the adversary could
only choose a point mass for pt. But they are both equivalent if you consider the expected loss of
the process.

With this phrasing, we rewrite the algorithm above:

Algorithm 4: Polynomial Weights Algorithm - Distributional Phrasing

Set w1
i = 1 for all i ∈ [N]

for t = 1 to T do

Let W t =
∑N

i=1w
t
i

Select pt to have pti = wti/W
t

Update wt+1
i = wti(1− γ`ti), where γ is some parameter to be set.

end

We can give the following guarantee for this algorithm:

Theorem 5. For an arbitrary sequence of loss functions:

T∑
t=1

`t · pt ≤
T∑
t=1

`t · p+ 2
√
T lnN,

where p is any fixed distribution over [N].

Proof. As before, we bound the total weight W t =
∑N

i=1w
t
i at each stage in two ways. We start

with an upper bound, by observing how the total mass decays over time. By inspecting the update
rule, we see

W t+1 =
N∑
i=1

wti(1− γ`ti) = W t(1− γ`t · pt)

Unrolling this, and using the fact that W 1 = N ,

W T+1 = N
T∏
t=1

(1− γ`t · pt).

We then take the logarithm of both sides, and use the fact that ln(1− x) ≤ −x.

lnW T+1 = lnN +

T∑
t=1

ln(1− γ`t · pt)

≤ lnN − γ
T∑
t=1

`t · pt

On the other hand, we can also prove a lower bound, by again considering the weight of any specific

5

expert i. This time, we will keep in mind the inequality ln(1− x) ≥ −x− x2 for −1/2 < x < 1/2.

lnW T+1 ≥ lnwT+1
i

=

T∑
t=1

ln(1− γ`ti)

≥ −
T∑
t=1

γ`ti −
T∑
t=1

(γ`ti)
2

≥ −γLTi − γ2T.

Since this holds for any particular expert i, it also holds for any fixed distribution p over these
experts:

−γp · LTi − γ2T = −γ
T∑
t=1

p · `ti − γ2T ≤ lnW T+1.

We combine this with our previous upper bound on lnW T+1:

−γ
T∑
t=1

p · `ti − γ2T ≤ lnN − γ
T∑
t=1

`t · pt.

Rearranging and rescaling by γ gives the following:

T∑
t=1

`t · pt ≤
T∑
t=1

`t · p+ γT +
lnN

γ
.

Choosing γ =
√

lnN/T completes the proof.

Multiplicative Weights for Queries

We now have some key ideas in place, and it’s time to bring this back to our problem of answering
linear queries. We will fit it into the multiplicative weights framework by phrasing the problem
in the right way. For now, we will focus on the non-private setting, which will seem pointlessly
indirect. But the translation into the differentially private setting will be much easier as a result.

Recall we have a set of queries Q where a query q(X) = 1
n

∑
k∈[n] q(Xk). However, we can rewrite

this by grouping points by “type,” moving from a dataset into a histogram representation. For each
i ∈ X , we define pi to be |{k:Xk=i}|

n : the fraction of the points which are equal to i. This is sometimes
called the empirical distribution over the dataset, and we will think of it as a distribution. With
this notation in place, we can write query q(X) as

∑
i∈X q(i)pi. We will use the shorthand 〈q, p〉

to represent this expression.

Suppose we wanted to answer these type of queries in the same type of online setting as above.
We are in fact not in the online setting (in that all the queries are known in advance), but this
perspective will be useful nonetheless. Specifically, we imagine the following happens repeatedly
over T rounds:

• An adversary picks a query qt ∈ Q.

6

• The algorithm selects a distribution pt over X .

We would like the algorithm to have a low regret in comparison to the best distribution in retrospect:
our goal will be to minimize

∑T
t=1 |〈qt, pt〉 − 〈qt, p〉|. We will analyze this using the multiplicative

weights framework above.

This might seem obtuse for two reasons. First, in our setting, the algorithm knows the dataset,
and thus it knows p: it could just select pt = p for all t and just be done with it! However, this is
clearly not private – in some sense, the multiplicative weights framework lets us converge to this
p2 by only performing queries of the sort 〈q, p〉, which is much easier to privatize. Second, it is not
clear why we care about the performance of our guesses in this sequential setting. Indeed, in the
end we just want to produce a single p̂, which performs well on all queries q ∈ Q at once. But the
strategy will be to argue that, if it makes a lot of mistakes as we feed it queries like this, it will
have “used up” all of the budget in the regret bound. Therefore, if we gave it any other query in
Q, it couldn’t make a mistake without contradicting the guarantees of the multiplicative weights
algorithm.

We will run the polynomial weights algorithm (Algorithm 4) in this setting. Our “experts” will
be the elements of X . It only remains to specify the losses which the adversary chooses. We will
derive this by looking at our objective function:

f(pt) = |〈qt, pt〉 − 〈qt, p〉|

Note that f is a convex function. Exploiting this property tells us that

f(pt) +∇f(pt) · (p− pt) ≤ f(p).

Rearranging, and using the fact that f(p) = 0:

f(pt) ≤ (∇f(pt)) · (pt − p).

Summing over all t, we get

T∑
t=1

|〈qt, pt〉 − 〈qt, p〉| ≤
T∑
t=1

(∇f(pt)) · (pt − p)

The last term should look familiar. Inspect Theorem 5 – it gives control over the inner product
of the loss vector and the difference between the algorithm’s choice pt and the best distribution
in hindsight p. This guides us on how we should choose the losses to feed into the multiplicative
weights algorithm: `t = ∇|〈qt, pt〉 − 〈qt, p〉|. Specifically, this gives a vector ∈ [−1, 1]|X | where
`ti = qt(i) if 〈qt, pt〉 ≥ 〈qt, p〉, and −qt(i) otherwise.

Thus, if we run the multiplicative weights algorithm with loss function `t = sign(〈qt, pt − p〉)qt, we
get

T∑
t=1

|〈qt, pt〉 − 〈qt, p〉| ≤
T∑
t=1

(∇f(pt)) · (pt − p) ≤ 2
√
T ln |X |,

which we state in the following theorem.

2Or at least converge in terms of the answers it gives to queries in Q

7

Theorem 6. Given an arbitrary sequence of T queries, we have the following regret bound:

T∑
t=1

|〈qt, pt〉 − 〈qt, p〉| ≤ 2
√
T ln |X |.

While this gives a regret bound, it is convenient for us to convert this to a “mistake bound.”
This will be useful since it will allow us to convert from guarantees about the performance of the
sequence pt to performance of the final distribution pT+1. We define a mistake as a time t when
|〈qt, pt〉 − 〈qt, p〉| > α. Suppose for all T time steps, the adversary chooses a function qt ∈ Q which
causes the algorithm to make a mistake: specifically, at every time t, |qt(pt) − qt(p)| ≥ α. This
gives a lower bound on the regret, of Tα: there are T time steps, and each incurs a regret of at
least α. However, the above theorem guarantees that the regret is upper bounded by 2

√
T ln |X |.

Combining these two bounds on the regret says that T ≤ 4 ln |X |
α2 . This implies that the adversary

can only choose queries from Q which result in a mistake up to 4 ln |X |
α2 times. After this, no q ∈ Q

would cause a mistake, meaning that it can answer all of them with error ≤ α.

This gives an approach for arriving at a distribution p̂ = pT+1 which can simultaneously answer all
queries accurately. Specifically, we act as the adversary, repeatedly choosing queries qt ∈ Q which
cause the algorithm to make a mistake. Again, it seems very roundabout, since we could have just
picked p̂ = p, but we will see that all of the steps in this algorithm are amenable to privacy. We
summarize in Algorithm 5 and Corollary 7.

Algorithm 5: A non-private multiplicative weights algorithm for answering linear queries

Set p1i = 1/|X | for all i ∈ X
for t = 1 to T do

Choose a query qt ∈ Q such that |〈qt, pt〉 − 〈qt, p〉| ≥ α
Compute s = sign(〈qt, pt〉 − 〈qt, p〉)

Update pt+1
i ∝ pti

(
1− s

(√
ln |X |
T

)
qti

)
end

Corollary 7. Algorithm 5 can only run for at most 4 ln |X |/α2 timesteps, until it is no longer able
to select a q ∈ Q which causes a mistake. Consequently, we have that pT+1 correctly answers all
queries q ∈ Q to accuracy ≤ α.

Private Multiplicative Weights

Private multiplicative weights is simply a translation of Algorithm 5 to the differentially private
setting. There are two steps in each iteration which depend on the dataset: selecting a query which
causes the algorithm to err, and checking how much error this query incurs (and the associated
sign). The former will be done by the exponential mechanism, and the latter via the Laplace

8

mechanism. Algorithm 6 describes the procedure more precisely.

Algorithm 6: Private multiplicative weights

Set p1i = 1/|X | for all i ∈ X
for t = 1 to T do

Use the exponential mechanism to choose a query qt ∈ Q with ε0-DP, using score
function |〈qt, pt〉 − 〈qt, p〉|

Compute yt = 〈qt, pt〉 − 〈qt, p〉+ Laplace(1/ε0n)
If |yt| ≤ 2α, return pt

Otherwise, compute s = sign(yt)

Update pt+1
i ∝ pti

(
1− s

√
ln |X |
T qti

)
end

Let us first analyze the privacy of this approach. We can see that each iteration is 2ε0-DP. By basic
composition, the overall algorithm is 2εT -DP. However, using advanced composition, this will be
(O(ε0

√
T log(1/δ)), δ))-DP. Setting ε0 = O(ε/

√
T log(1/δ)) gives (ε, δ)-DP.

It remains only to reason about the accuracy. The only places that error is incurred due to privacy
are in the application of the exponential and Laplace mechanisms. If both of these incur error
at most, say α/100, then we will be successfully executing a strategy like in Algorithm 5. This
is because the exponential mechanism will choose a query which incurs regret which is within an
additive α/100 of the large possible. Similarly, because of the Laplace mechanism, we incur error at
most α/100 when measuring how much error it incurs (potentially choosing to return if the answer
is small). Combining these appropriately gives that we will always ask a query which incurs Ω(α)
regret, and we can prove a similar result as Corollary 7 to bound T ≤ O(log |X |/α2).

Analyzing the accuracy of both of these is standard.3 The Laplace mechanism incurs error O(1/ε0n)
for each invocation. Upper bounding this by α/100 gives the requirement that n ≥ Ω(1/αε0) =

Ω
(√

log |X | log(1/δ)/α2ε
)

. Similarly, the exponential mechanism incurs error O
(
log |Q|
nε0

)
, and

bounding this by α/100 requires that n ≥ Ω
(

log |Q|
√

log |X | log(1/δ)/α2ε
)

. These bounds give

Theorem 1. They actually give something slightly stronger: a synthetic dataset which can answer
all the queries in Q.

Notes

The first half of these lecture notes is based heavily off of notes of Aaron Roth [Rot17]. Thanks to
Sasho Nikolov and Aaron Roth for advice when preparing this lecture.

References

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update
method: A meta-algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

3We analyze both of these for only a single round, but a union bound can give the same guarantee for all rounds
at the cost of a logarithmic factor in T .

9

[BLR13] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to nonin-
teractive database privacy. Journal of the ACM, 60(2):1–25, 2013.

[GLM+10] Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar. Dif-
ferentially private combinatorial optimization. In Proceedings of the 21st Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’10, pages 1106–1125, Philadelphia,
PA, USA, 2010. SIAM.

[GRU12] Anupam Gupta, Aaron Roth, and Jonathan Ullman. Iterative constructions and private
data release. In Proceedings of the 9th Conference on Theory of Cryptography, TCC
’12, pages 339–356, Berlin, Heidelberg, 2012. Springer.

[GZ20] Arun Ganesh and Jiazheng Zhao. Privately answering counting queries with generalized
gaussian mechanisms. https://people.eecs.berkeley.edu/~arunganesh/papers/

generalizedgaussians.pdf, 2020.

[HLM12] Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and practical algorithm
for differentially private data release. In Advances in Neural Information Processing
Systems 25, NIPS ’12, pages 2339–2347. Curran Associates, Inc., 2012.

[HR10] Moritz Hardt and Guy N Rothblum. A multiplicative weights mechanism for privacy-
preserving data analysis. In Proceedings of the 51st Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS ’10, pages 61–70, Washington, DC, USA, 2010.
IEEE Computer Society.

[Rot17] Aaron Roth. Nets 412: Algorithmic game theory – lecture 5 and 6. https://www.cis.
upenn.edu/~aaroth/courses/slides/agt20/lect05.pdf, 2017.

[SU17] Thomas Steinke and Jonathan Ullman. Between pure and approximate differential
privacy. The Journal of Privacy and Confidentiality, 7(2):3–22, 2017.

[SU19] Thomas Steinke and Jonathan Ullman. Open problem - avoiding the union bound for
multiple queries. https://differentialprivacy.org/open-problem-avoid-union/,
April 2019.

[UV11] Jonathan Ullman and Salil Vadhan. PCPs and the hardness of generating private
synthetic data. In Proceedings of the 8th Conference on Theory of Cryptography, TCC
’11, pages 400–416, Berlin, Heidelberg, 2011. Springer.

[Vad17] Salil Vadhan. The complexity of differential privacy. In Yehuda Lindell, editor, Tutorials
on the Foundations of Cryptography: Dedicated to Oded Goldreich, chapter 7, pages
347–450. Springer International Publishing AG, Cham, Switzerland, 2017.

10

https://people.eecs.berkeley.edu/~arunganesh/papers/generalizedgaussians.pdf
https://people.eecs.berkeley.edu/~arunganesh/papers/generalizedgaussians.pdf
https://www.cis.upenn.edu/~aaroth/courses/slides/agt20/lect05.pdf
https://www.cis.upenn.edu/~aaroth/courses/slides/agt20/lect05.pdf
https://differentialprivacy.org/open-problem-avoid-union/

