
CS 860: Algorithms for Private Data Analysis Fall 2020

Lecture 9 — Sparse Vector

Prof. Gautam Kamath Scribe: Gautam Kamath

Suppose we receive a sequence of k sensitivity-1 queries in an online setting: at timestep t, we
receive a query ft : X n → R, and we have to answer ft(D) as best we can under the constraint
of differential privacy. In this setting, all we can really do is run the Laplace mechanism on the
queries as they come. If there are a total of k queries, then using basic composition, we would be
able to answer all queries with accuracy roughly k/ε. If we use advanced composition, we can do
a bit better:

√
k/ε. But the point is, both of these are polynomial in k, and this is unavoidable.

Instead, we will consider a slightly easier question: we didn’t necessarily want to answer all the
queries, but only identify which ones were large. We can see there’s a bit of hope here. Suppose we
were given all the queries f1 through fk in advance: we could simply run the exponential mechanism.
In particular, the set of objects would be the k functions f1, . . . , fk, and the score function of fi
would be fi(D). This would pick the query with (approximately) the largest value, up to an error
of roughly log k

ε – only logarithmic in the number of queries, rather than polynomial. Note that this
algorithm can also be run iteratively to (approximately) pick out the c largest queries, increasing

the error to c log k
ε (or

√
c log k
ε with approximate DP). So this shows that there’s some hope – but

the exponential mechanism only works in the offline setting, where all the queries are given to us
in advance. In order to do this in the online setting, we will introduce the sparse vector technique.

First, since the queries will be coming in an online manner, we can’t hope to say whether the
first query is going to be the largest one until we see the later queries. Instead, we try to answer
which queries are greater than some pre-specified (and publicly known) threshold T . With this in
mind, the actual algorithm we present will be relatively straightforward, though it is notoriously
challenging to get the details precisely right to guarantee privacy. We will just run the Laplace
mechanism for each query: however, rather than outputting the value of this query, we only return
the bit corresponding to whether it is greater than or less than some threshold. The tricky part is
that we must not only add Laplace noise to the query result but also to the threshold T , and each
(noisy) query result is compared to the resulting (noisy) threshold T̂ . As we will see in the proof,
this has the miraculous effect of privatizing the result of many queries simultaneously, thus saving
significant amounts in our privacy budget.

To state our goals again, succinctly: we have a sequence of k sensitivity-1 queries, and the goal is
to identify the first c queries (where c� k) which have value greater than some (public) threshold
T .

Above Threshold

We start with a simple case, when c = 1. Specifically, we first present AboveThreshold (Figure 1),
an algorithm which keeps answering queries until it observes the first “large” one, and then it halts.
For a large query, it will output >, and for a small query it outputs ⊥. The case for general c
(which we discuss afterwards) will follow by composition of differential privacy.

A convenient thing to observe about AboveThreshold is that nothing in the algorithm depends

1

Figure 1: Algorithm 1 in [DR14], the AboveThreshold method for finding the first large query in a
stream.

on the number of queries k – it could potentially be an infinitely long stream, and we would still
have differential privacy. What would decay is the accuracy guarantee – indeed, as we take more
and more Laplace random variables, the maximum deviation of any of them would become larger,
leading to weaker accuracy bounds. We will quantify this more precisely later, but for now we focus
on the privacy guarantee.

Theorem 1. AboveThreshold is ε-differentially private.

A very interesting part of this proof is how the two randomizations serve to preserve privacy in
different parts of the algorithm. Roughly speaking, randomizing the threshold privatizes all but
the last result, whereas the last one is privatized by the noise addition to the query.

Proof. We fix neighbouring databases D and D′, and let the outputs of AboveThreshold on these
two databases (with the same set of queries, thresholds, and ε) be A and A′, respectively. The
algorithm runs by output a stream of ⊥, and then a single >. Let a be the output ⊥t−1> – that is,
it returns > and halts on query t, for some arbitrary t. We will relate the probabilities that A = a
and A′ = a in the usual way for differential privacy.

First, we fix the values of ν1, . . . , νt−1 to some arbitrary realizations – the proof will still hold, no
matter what they come out to be. This relates to the prior comment about the randomization
present in T̂ privatizing all but the last query. In particular, we will compute the probabilities only
with respect to νt and T̂ . Let g(D) be the maximum noised value of the first t− 1 queries:

g(D) = max
i≤t−1

(fi(D) + νi).

Observe that, since we are fixing the realizations of the νi, this is a deterministic quantity.

2

We can write the probability that the algorithm on D outputs a as follows:

Pr
T̂ ,νt

[A = a] = Pr
T̂ ,νt

[T̂ > g(D) and ft(D) + νt ≥ T̂]

= Pr
T̂ ,νt

[g(D) ≤ T̂ ≤ ft(D) + νt]

=

∫ ∞
−∞

∫ ∞
−∞

Pr[νt = v] Pr[T̂ = τ]1τ∈(g(D),ft(D)+v]dvdτ

At this point, we perform a change of variables. The goal is to transform from D to D′, so we
define the new variables to account for this shift. Let τ = τ̂ − g(D′) + g(D), and v = v̂ − g(D′) +
g(D)− ft(D) + ft(D

′). We perform this substitution for the indicator random variable:∫ ∞
−∞

∫ ∞
−∞

Pr[νt = v] Pr[T̂ = τ]1(τ̂−g(D′)+g(D))∈(g(D),ft(D)+v̂−g(D′)+g(D)−ft(D)+ft(D′)]dv̂dτ̂

=

∫ ∞
−∞

∫ ∞
−∞

Pr[νt = v] Pr[T̂ = τ]1τ̂∈(g(D′),v̂+ft(D′)]dv̂dτ̂

At this point, we convert the v and τ in the probabilities from v to v̂, and similarly from τ to τ̂ . As
we can see from the definitions above, |τ̂ − τ | ≤ |g(D)− g(D′)| ≤ 1, the latter inequality following
because the queries are sensitivity-1. A similar reasoning gives that |v̂ − v| ≤ 2. Putting these
together with the definition of the Laplace PDF, we can upper bound the above by∫ ∞

−∞

∫ ∞
−∞

exp(ε/2) Pr[νt = v̂] exp(ε/2) Pr[T̂ = τ̂]1τ̂∈(g(D′),v̂+ft(D′)]dv̂dτ̂

= exp(ε) Pr
T̂ ,νt

[g(D′) ≤ T̂ ≤ ft(D′) + νt]

= exp(ε) Pr
T̂ ,νt

[A′ = a].

Next, we reason about accuracy. Since we are not outputting the numerical values of the queries,
it is not immediately obvious how to define our accuracy notion. We will say that, with high
probability, our algorithm makes no “mistakes”. A mistake will be when the algorithm says a small
query is larger than the threshold, or when a large query is smaller than the threshold. But since
the answers to the queries are noisy, we must give the algorithm a bit of slack. Specifically: we say
the algorithm is (α, β) accurate if, when applied to a sequence of k queries, then for all i ∈ [k], if
ai = > then fi(X) ≥ T −α, and if ai = ⊥ then fi(X) ≤ T +α, with probability at least 1−β. This
lets us get away with saying a query is large even if it is slightly below the threshold, and small
even if it is slightly above. The accuracy of the algorithm will be measured in terms of this α.

Theorem 2. Given a sequence of k queries where all but the last one are significantly smaller
than the threshold (i.e., for all i < k, fi(D) ≤ T − α), then AboveThreshold is (α, β) accurate for

α = 8(log k+log(2/β))
ε .

Observe that the error increases only logarithmically in the total number of queries k, as opposed
to polynomial as we would have incurred with the naive Laplace mechanism, or if we were trying

3

to output the values of the queries. The accuracy guarantee is comparable to what we would get
if we used the exponential mechanism, with the additional benefit of being applicable in the online
setting.

Proof. Ideally, in the ith query, we would like to compare fi(D) with T . In actuality, we compare
fi(D) + νi with T + (T̂ −T). Note that both νi and T̂ −T are Laplace random variables. If we can
bound |νi| and |T̂ −T | by α/2 for all i simultaneously, then we have the desired accuracy guarantee.
For example, consider if ai = >, this implies that

fi(D) + νi ≥ T + (T̂ − T).

Rearranging this gives that fi(D) ≥ T + (T̂ − T) − νi. If the latter two terms are bounded in
magnitude by α/2, this gives fi(D) ≥ T −α, which is the accuracy guarantee we desire. The same
reasoning works for when ai = ⊥, try verifying the details yourself.

It remains to prove that |νi| and |T̂ − T | are both bounded by α/2. We use the tail bound
Pr[|Laplace(b)| ≥ tb] = exp(−t). Thus:

Pr[|T − T̂ | ≥ α/2] = exp(−εα/4),

Pr[max
i∈[k]
|νi| ≥ α/2] ≤ k exp(−εα/8).

The latter inequality uses a union bound. Setting both these probabilities to be at most β/2 imposes

the constraint that we have the desired accuracy guarantees so long as α ≥ 8(log(2/β)+log k)
ε .

Sparse Vector

AboveThreshold is a convenient primitive for detecting a single large query, and it can be chained
together multiple times to detect c large queries. This is a testament to the power of differential
privacy – despite the fact that the privacy proof for AboveThreshold was rather technical, it is easy
to use it as a building block for this more complicated scenario. The sparse vector algorithm is
displayed in Figure 2.

Let’s inspect the privacy guarantee in the pure DP case (when δ = 0). The algorithm is exactly
equivalent to running AboveThreshold c times in a row with parameter ε/c, starting again every
time AboveThreshold halts. Importantly, the threshold is re-randomized after each > is output,
otherwise it would not be equivalent to multiple subsequent runs of AboveThreshold. By basic
composition, the overall algorithm is ε-DP. A similar analysis holds for δ > 0 but using advanced
composition, resulting in (ε, δ)-DP.

Theorem 3. Sparse is (ε, δ)-DP, for any ε > 0, δ ≥ 0.

Similarly, the accuracy can be reasoned from Theorem 2. β is rescaled by a factor of c and a
union bound is applied. Additionally, ε is rescaled as done in Figure 2 to guarantee privacy (by
composition). Putting these together allows us to conclude the following accuracy guarantee.

Theorem 4. Suppose we are given a sequence of k queries where only c are large (i.e., the number
of i such that fi(D) ≥ T − α is at most c). If δ = 0, then Sparse is (α, β) accurate for α =
8c(log k+log(2c/β))

ε . If δ > 0, then it is (α, β) accurate for α =

√
512c log(1/δ)(log k+log(2c/β))

ε .

4

Figure 2: Algorithm 2 in [DR14], the Sparse Vector algorithm.

We see that the dependence on the number of large values c is polynomial, and on total number of
queries k is logarithmic, allowing us to detect large queries from a big set with good accuracy, as
long as not too many of them are large.

We note that there is also a variant of sparse vector, which we refer to as NumericSparse, which
can output the (approximate) value of everything that is above the threshold at the cost of a small
multiplicative factor in α. Specifically, if the algorithm is going to output > for a query, it instead
adds fresh Laplace noise to the value of the query and outputs the result.1 The output of the
algorithm will now be a stream of values in R ∪ {⊥}, with the following guarantees:

• If ai = ⊥, then fi(D) ≤ T + α;

• If ai ∈ R, then fi(D) ≥ T − α and |fi(D)− ai| ≤ α.

The value of α is the same as in Theorem 4, up to a constant factor. This constant factor arises
since we have one more application of the Laplace mechanism when returning the numeric query
values. To maintain the same privacy budget, we must rescale ε.

The intuition behind this modification: those whole idea behind the sparse vector technique is to
pay logarithmically in the total number of queries, but polynomially in the number which are above
the threshold. Since we already pay for these queries anyway, we can afford to do another private
operation for each of them without changing the overall privacy cost by more than a constant
factor.

1It is important that fresh noise is added once again, otherwise it will not be private.

5

Online Private Multiplicative Weights

With the powerful tool of sparse vector, we can revisit the private multiplicative weights algorithm,
and port it to the online setting. First, we recall the (offline) version of private multiplicative
weights. We try to maintain a distribution p̂ over the domain elements, with the goal of matching
the true dataset (in its histogram representation) p on all linear queries in some set Q.2 We start
with p̂ being a uniform distribution over the domain X , and repeatedly apply the following:

1. Use the exponential mechanism to privately choose a query f ∈ Q where p̂ and p would have
significantly different answers.

2. Privately measure how large the error is. If it is small, then we return the current p̂.

3. Otherwise, perform a multiplicative weights update on p̂, based on the (private) result of f
on p.

Guarantees of multiplicative weights allow us to bound the total number of iterations of this pro-
cedure as O(log |X |/α2).

We move to the online setting by integrating this approach with the sparse vector technique. In
this setting, we are given k queries f1, . . . , fk sequentially from a set Q. Our goal is slightly relaxed:
instead of trying to output a “synthetic dataset” (a p̂ which gives accurate answers on all queries
in Q), we instead try to simply answer the queries correctly as they come.3

The algorithm will again initialize p̂ to be a uniform distribution over the domain X . However,
this time, it will run the sparse vector technique on the queries |〈p̂, f〉 − 〈p, f〉|, with threshold
T = Θ(α). In each iteration:

1. If Sparse returns ⊥, this means that |〈p̂, f〉 − 〈p, f〉| is small, that 〈p̂, f〉 ≈ 〈p, f〉. Therefore,
we can just output 〈p̂, f〉, and continue to the next iteration.

2. If Sparse returns >, that means that |〈p̂, f〉 − 〈p, f〉| is large. We privately compute and
output 〈p, f〉 (essentially using NumericSparse as mentioned above, which allows us to return
the values of the large queries).

3. We perform a multiplicative weights update on p̂ using the (private) result of f on p, and
continue to the next iteration.

Note that, once again, the total number of iterations of this procedure is at most O(log |X |/α2).

Given the tools we have developed, the analysis is straightforward. Privacy is simply by the
guarantees of sparse vector, followed by privacy of the Laplace mechanism (or, one could use
NumericSparse as a black box). As for accuracy, this is simply due to the accuracy guarantees of
sparse vector in combination with the accuracy guarantees of the multiplicative weights algorithm
for queries as discussed in the last lecture. With all this in hand, it is an exercise to derive the
following guarantees for the online private multiplicative weights algorithm.

2Note that there’s a small change in the setting here – as we are looking at normalized linear queries (i.e., ones
which have values in [0, 1]) which makes the sensitivity 1/n, in comparison to the sensitivity-1 queries discussed
above.

3It is not hard to get the stronger synthetic dataset guarantee – you can just remember all the queries that were
asked, and do the offline algorithm afterwards.

6

Theorem 5. The Online Private Multiplicative Weights algorithm can, in an online manner,
answer a set Q of linear queries on a database of size n to accuracy α under (ε, δ)-DP, given

n = Õ

(
log |Q|

√
log |X | log(1/δ)
α2ε

)
datapoints.

Notes

Content in this chapter is based heavily off Section 3.6 of [DR14].

References

[DR14] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foun-
dations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

7

