
CS 860: Algorithms for Private Data Analysis Fall 2020

Problem Set 1

Prof. Gautam Kamath Deadline: 11:59 PM on October 5, 2020

You are allowed to discuss the problems in pairs. List your collaborator for each problem. Every
person must write up and submit their own solutions. Allowed references are anything given on
the course website. It might be possible to find solutions to these problems online, but please do
not search for them. If you have already seen a solution before, solve it without referring to said
reference.

1. A different private algorithm. Suppose that we wanted to answer a count query: f(X) =∑n
i=1Xi, where Xi ∈ {0, 1}. In class, we learned the Laplace mechanism: simply add Laplace

noise with scale parameter 1/ε. But what if we didn’t have access to Laplace noise? Suppose
Z is a continuous uniform random variable, drawn uniformly from the interval [−3/ε, 3/ε].
Consider the statistic f̃(X) =

∑n
i=1Xi + Z. Is f̃ O(ε)-differentially private? If yes, prove it,

with the best constant you can give in the privacy guarantee. If no, explain why not.

2. Randomized Response, re-revisited. We’ll see some generalizations of randomized re-
sponse, beyond just binary alphabets. I will informally and vaguely describe an algorithm,
you must rigorously define and specify the algorithm and prove that it is ε-differentially
private.

(a) Let’s start by revisiting the binary case. The analysis of randomized response we gave
in class was sloppy in two ways: first, it used big-Oh notation, and only worked for
sufficiently small ε. Give a randomized response algorithm and analysis which works
for all ε > 0. More precisely: the vector (Y1, . . . , Yn) ∈ {0, 1}n is output, where Yi is
equal to Xi with probability proportional to g(ε) (for some function g which you must
specify), and equal to 1 − Xi with probability proportional to 1. Informally speaking,
this algorithm will be “exact” – the differential privacy guarantee will hold with equality.

(b) Let’s generalize this beyond the binary alphabet, assume Xi ∈ {1, . . . , k} for the remain-
der of this problem. The vector (Y1, . . . , Yn) ∈ {1, . . . , k}n is output, where Yi is equal to
Xi with probability proportional to g(ε) (for some function g which you must specify),
and equal to each s ∈ {1, . . . , k} \Xi with probability proportional to 1.

(c) Here’s another way to generalize randomized response. The vector (Y1, . . . , Yn) ∈ {0, 1}kn
is output. Yi ∈ {0, 1}k is a vector generated in the following manner: each Xi is first
converted to a “one-hot” vector ∈ {0, 1}k, where coordinate j is 1 if j = Xi and 0 other-
wise. Yi generated from Xi by applying a bitwise randomized response (with appropriate
parameter).

3. Mean estimation with non-binary data. In class, we saw how to estimate the mean of
a dataset 1

n

∑n
i=1Xi in the case when the Xi’s are binary. Here, we will see how to estimate

the mean of a dataset when this may not be the case.

(a) Suppose we only knew the Xi ∈ R were real numbers. Prove that, for all t ≥ 0, there is
no ε-differentially private algorithm M : Rn → R such that Pr [|M(X)− f(X)| ≤ t] ≥
9/10, where ε = 1. Optionally, prove the same statement for finite all ε > 0.
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(b) The previous problem showed that, in general, we can’t privately estimate the mean of
an unbounded dataset. Let’s see how we can circumvent this issue. Give an algorithm
A2 : Rn → R with the following guarantees. The algorithm is ε-differentially private,
for all possible datasets (X1, . . . , Xn) ∈ Rn. If all Xi ∈ [−R,R], then there exists some
constant C > 0 such that Pr[|A2(X)− f(X)| ≤ CR

εn ] ≥ 9/10. The parameter R is known
to the algorithm. Observe that this algorithm must always be private, but only needs
to be accurate when the input dataset satisfies some additional properties.

(c) You have now shown that, if the data is in some known bounded range, we can privately
estimate its mean. However, this can still be wasteful if R is large, but the data is
actually concentrated in a much tighter range. The latter is often the case: for instance,
given Gaussian data sampled from N(0, 1), almost all of the data will lie in the range
[−3, 3]. Thus, the last two parts of this problem will attempt to reduce the dependence
on R when something like this holds.

Suppose we are given a dataset X ∈ Rn. Give an algorithm A1 with the following guaran-
tees. The algorithm is ε-differentially private, for all possible datasets (X1, . . . , Xn) ∈ Rn.
If there exists some interval I ⊂ [−R,R] such that all Xi ∈ I and the width of the inter-
avl I is bounded by 2, and if n ≥ C logR

ε for some constant C > 0, then with probability
at least 9/10 the algorithm outputs an interval J such that I ⊂ J and the width of J is
bounded by some constant (you can choose the constant, but prove it explicitly). Again,
assume the parameter R is known to the algorithm, but the interval I is not.

(d) Give an algorithm A with the following guarantees. The algorithm is ε-differentially
private, for all possible datasets (X1, . . . , Xn) ∈ Rn. If all Xi ∈ I for some interval
I ⊂ [−R,R] of width at most 2, and if n ≥ C1 logR

ε for some constant C1 > 0, then there

exists some constant C2 > 0 such that Pr[|A(X)− f(X)| ≤ C2
εn ] ≥ 4/5.

2


