Perceptron

Gautam Kamath

Binary Classification

- Given: $(x_1, y_1), (x_2, y_2), ...$
 - x_i : "feature vector." Often $x_i \in \mathbf{R}^d$
 - y_i : "label." For binary classification, $y_i \in \{-1, +1\}$
 - You may also see $y_i \in \{0,1\}$
- Idea: "Learn" a function h such that h(x) = y
 - Given a feature vector, what is the label?

Pass class example

- Feature vector x_i : (homework mark, exam mark)
- Label y_i : Passed the class?
- Dataset (draw on board):
 - ((90, 80), +1), ((40, 30), -1), ((50, 40), -1)
- Can always memorize training data
 - But we want to generalize!
 - ((50,60),?)

Image Classifier example

• Feature vector x_i :

• Label y_i : Is this a panda or not?

Statistical Learning

- Setup: Given $(x_1, y_1), \dots, (x_n, y_n) \sim_{i.i.d.} P$
 - Independent and identically distributed may be limiting, but common assn
- Goal: Learn $h : \mathbb{R}^d \to \{-1, +1\}$ such that $\Pr_{(x,y)\sim P}[h(x) = y]$ is large
 - Importantly, P is unknown (otherwise could use the "Bayes classifier")
 - What happens if we get something "out of distribution"?
 - (Draw two clusters on board, wrong label and unpredictable examples)

Online Learning

- Receive examples one by one and make predictions as we go
- At each time t = 1, 2, ...
 - Receive feature vector x_i
 - Choose prediction function h_i , predict label $\hat{y}_i = h_i(x_i)$
 - View true label y_i . Suffer mistake if $y_i \neq \hat{y}_i$.

Intuition of Perceptron

- (Draw pass class example on board, add more points)
- Plausible grading scheme: if average of hw and exams > 0.5, pass.
- Equivalently: if $0.5 \cdot \text{homework} + 0.5 \cdot \text{exams} > 0.5$, pass.
 - Or: if $0.5 \cdot \text{homework} + 0.5 \cdot \text{exams} 0.5 > 0$, pass.
- Rewrite as: sign($\langle (0.5, 0.5), (homework, exams) \rangle 0.5 \rangle$
 - Dot product notation: $\langle u, v \rangle = \sum_i u_i v_i$
 - sign(a) = 1 if a > 0, = -1 otherwise
- Let x = (homework, exams): y = sign(((0.5, 0.5), x) 0.5))
- Implicit assumption in perceptron: there is some linear separator

Perceptron Algorithm

Algorithm: The Perceptron (Rosenblatt 1958)

Input: Dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \{\pm 1\} : i = 1, ..., n\}$, initialization $\mathbf{w} \in \mathbb{R}^d$ and $b \in \mathbb{R}$, threshold $\delta \ge 0$ **Output:** approximate solution \mathbf{w} and b **1** for t = 1, 2, ... do **2** receive training example index $I_t \in \{1, ..., n\}$ // the index I_t can be random **3** if $y_{I_t}(\mathbf{w}^\top \mathbf{x}_{I_t} + b) \le \delta$ then **4** $\begin{bmatrix} \mathbf{w} \leftarrow \mathbf{w} + y_{I_t} \mathbf{x}_{I_t} \\ b \leftarrow b + y_{I_t} \end{bmatrix}$ // update only after making a "mistake"

- Weight vector *w*, bias *b*
- Typically initialize $w = \vec{0}, b = 0$, set $\delta = 0$
- "Lazy" updates: only change if a prediction is wrong
- (Examples on board. ((1,1), 1) and ((-1, -1), -1), change to $((-\frac{1}{4}, -\frac{1}{4}), -1)$)

Notation: Padding + Pre-Multiplication

- Goal: find w, b such that $y_i = \operatorname{sign}(\langle w, x_i \rangle + b)$ for all $i \in [n]$
 - $y_i = \operatorname{sign}(\langle (w, b), (x_i, 1) \rangle)$ ("padding trick")
 - $y_i = \operatorname{sign}(\langle z, (x_i, 1) \rangle)$ (Let z = (w, b) to simplify notation)
 - $y_i \langle z, (x_i, 1) \rangle > 0$ (equivalent formulation)
 - $\langle z, y_i(x_i, 1) \rangle > 0$
 - $\langle z, a_i \rangle > 0$ (Let $a_i = y_i(x_i, 1)$ to simplify notation)
- Let A be the matrix with rows a_i (draw on board)
- Then goal is $Az > \vec{0}$ (entrywise)

Linear Separability

- (Draw picture of separable and non-separable datasets on board)
- There exists z = (w, b) such that $\langle a_i, z \rangle \ge s > 0$ for all $i \in [n]$, for some constant s
- Equivalently: $Az \ge s\vec{1}$, where s > 0
- (Draw picture of what the *s* means)

Error Bound

- Theorem: Suppose there exists some weight vector and bias z = (w, b) such that $Az \ge s\vec{1}$. Then perceptron will correctly classify the entire dataset after at most $R^2 ||z||_2^2/s^2$ mistakes, where $R = \max ||a_i||_2$.
 - $||x||_2$ is the ℓ_2 -norm of $x: \sqrt{\sum_i x_i^2}$, measures how "big" a vector is
- (Draw picture with intuition as to why *R* shows up: one with big *R* and one with small *R*)

- Theorem (informal): If $\exists z, s$ such that $Az \ge s\vec{1}$, perceptron makes at most $R^2 ||z||_2^2/s^2$ mistakes, where $R = \max ||a_i||_2$.
 - But there may be many valid z, s. Scaling: if $Az \ge s\vec{1}$, then $A(2z) \ge (2s)\vec{1}$.
 - (Draw picture on board of non-uniqueness)
 - Pick the "best" one to minimize $||z||_2^2/s^2$ and thus the number of mistakes

- Theorem (informal): If $\exists z, s$ such that $Az \ge s\vec{1}$, perceptron makes at most $R^2 ||z||_2^2/s^2$ mistakes, where $R = \max ||a_i||_2$.
 - Pick the "best" one to minimize $||z||_2^2/s^2$ and thus the number of mistakes

$$\min_{\substack{(z,s):Az \ge s\vec{1}}} \frac{\|z\|_2^2}{s^2}$$

- Theorem (informal): If $\exists z, s$ such that $Az \ge s\vec{1}$, perceptron makes at most $R^2 ||z||_2^2/s^2$ mistakes, where $R = \max ||a_i||_2$.
 - Pick the "best" one to minimize $||z||_2^2/s^2$ and thus the number of mistakes

$$= \frac{\min_{(z,s):Az \ge s\vec{1}} \frac{\|z\|_2^2}{s^2}}{\left(\max_{(z,s):\|z\|_2 = 1, Az \ge s\vec{1}} s^2\right)^2} = \min_{(z,s):\|z\|_2 = 1, Az \ge s\vec{1}} \frac{1}{s^2}$$

- Theorem (informal): If $\exists z, s$ such that $Az \ge s\vec{1}$, perceptron makes at most $R^2 ||z||_2^2/s^2$ mistakes, where $R = \max ||a_i||_2$.
 - Pick the "best" one to minimize $||z||_2^2/s^2$ and thus the number of mistakes

$$\min_{\substack{(z,s):Az \ge s\vec{1} \\ (z,s):Az \ge s\vec{1}}} \frac{\|z\|_2^2}{s^2} = \min_{\substack{(z,s):\|z\|_2 = 1, Az \ge s\vec{1} \\ (z,s):\|z\|_2 = 1, Az \ge s\vec{1}}} \frac{1}{s^2}$$
$$= \frac{1}{\left(\max_{\|z\|_2 = 1} \\ \min_i \langle a_i, z \rangle\right)^2}$$

- Theorem (informal): If $\exists z, s$ such that $Az \ge s\vec{1}$, perceptron makes at most $R^2 ||z||_2^2/s^2$ mistakes, where $R = \max ||a_i||_2$.
 - Pick the "best" one to minimize $||z||_2^2/s^2$ and thus the number of mistakes

$$\min_{\substack{(z,s):Az \ge s\vec{1} \\ (z,s):Az \ge s\vec{1}}} \frac{\|z\|_2^2}{s^2} = \min_{\substack{(z,s):\|z\|_2 = 1, Az \ge s\vec{1}}} \frac{1}{s^2}$$
$$= \frac{1}{\left(\max_{\substack{(z,s):\|z\|_2 = 1, Az \ge s\vec{1}}} S\right)^2} = \frac{1}{\left(\max_{\substack{|z\|_2 = 1}} \min_i \langle a_i, z \rangle\right)^2} = \frac{1}{\gamma^2}$$
$$\max_{\substack{(z,s):\|z\|_2 = 1, Az \ge s\vec{1}}} S_1^2 = \frac{1}{\left(\max_{\substack{|z\|_2 = 1}} \min_i \langle a_i, z \rangle\right)^2} = \frac{1}{\gamma^2}$$

 $\gamma = \max_{\|z\|_2=1} \min_{i} \langle a_i, z \rangle$ is the *margin* of the solution wrt the dataset. Large margin = easy, small margin = easy (draw small vs large margin)

Uniqueness?

- Perceptron only guarantees finding some solution (may be many)
- Certainly not the "best" solution (draw picture)
- Support Vector Machines (SVMs) in a few lectures

What if the data is non-separable?

- The algorithm will never halt, perceptron will "cycle"
- It is not the right algorithm for data which is not linearly separable

When to terminate?

- When all points are classified correctly
 - Training error stops decreasing
- "Validation error" stops decreasing
 - Validation dataset: another dataset that you don't train on, use to measure quality of solution so far
- Some iteration or update budget is exhausted
- Weights aren't changing much

Beyond Binary Classification: Multiclass

- Is a picture a dog, cat, bird, horse, frog?
- One-versus-all
 - Train k classifiers, one for dog vs. not dog, one for cat vs. not cat, etc.
 - Output prediction $\arg \max_i \langle z_i, x \rangle$ for the label of point x
- One-versus-one
 - Train $\binom{k}{2}$ classifiers, one for dog vs. cat, one for dog vs. bird, etc.
 - To classify a point, run all of these $\binom{k}{2}$ classifiers and output the majority vote