Deep Networks

Gautam Kamath



Overfitting and Generalization

* p parameters, n datapoints, d dimensions
* Classical setting: p = d

* Modern neural networks: p > nd
* Biggest neural networks today: > 1,000,000,000,000 parameters (1 trillion)
 MNIST dataset: 60000 images, 28 X 28 pixels = nd = 47 million

* Note that it’s possible for a network with = nd parameters to “memorize”
training dataset — no generalization guarantee



Avoiding Overfitting

* Bagging
* Regularization
 Regularized loss: Lg (x,y) + % 1615
* Taking the gradient wrt 6: VLg, __ (x,y) + 16,_4
* Gradient descent: 8, « 6,_; —n(VLg,_ (x,y) + 16,_1)
* Equivalently: 6, « (1 —nA)0;_; —nVig,_ (x,y)
* Sometimes called weight decay in neural networks

* Data augmentation



Data Augmentation

e But be careful! (6 becomes 9 when rotated)



Early Stopping

0.20 ,

(.15

(). 11}

(1,005

Loss (negative log-likelihood)

(1.0
() o)

Iraining set loss

Validation set loss

L0 15()

Time (epochs)

200

250



Dropout

* Keep each node w.p. p > 0 when training (independent for each
point)

e (Draw network, draw dropped out version)
* Common hyperparameters: 0.5 for hidden nodes, 0.8 for inputs

e Consider input to layer 2: z(3) = W@ pD) 4 p2)
* Since only p fraction of h(1)’s are kept (in expectation), must scale up by 1/p
e (Draw hD layer, with mask and scaling)

e Test time: no dropout, no scaling
* This is called inverted dropout (more common)
* Otherwise, scale at test time instead



Normalization

* Normalize features before training
1
* Compute mean: y = ;ZXi

* Recenter data around mean: X; <« X; — u

: . 1
 Compute variance of each coordinate: sz = ;ZXU

* Rescale data in each coordinate: X;; « X;;/0;

* (Draw transformation)



Batch Normalization

o 7() = WORE-D) 4 p®
o« h(D = f(z(i))
* (draw)

. qumalize the coordinates of
z() over each minibatch
e Debate: normalize z(® or h(V?

e Add scale and shift learnable
parameters

* Apply to each neuron
individually

Input: Values of x over a mini-batch: B = {21, };
Parameters to be learned: v, 3
Output: {y; = BN, 5(z;)}

1 m
KB < E;%

1 m
0% — > (wi — ps)?
t=1

// mini-batch mean

// mini-batch variance

Ly — UB

Y; <+ 7T; + B = BN, g(x;)

T; — // normalize

// scale and shift




Layer Normalization

* Batchnorm: Average within each neuron, over a batch
e Layernorm: Average within each layer, over single datapoints
* (Draw)



Optimization

* First-order methods: things which use only first derivative info

* Second-order methods: things which use second derivative info
* Take more memory, time per step, but fewer steps. Less popular in practice.



Standard First-Order Methods

* Batch gradient descent

* 0 0—n T, Velo(x, )

* Attempts to estimate Ey y)~p[Vofo (x;, ;)]
e Stochastic gradient descent

* 0 <0 —n- Vobg(xyyi)

* Pick a random example, take a step. Or instead of random: shuffle dataset, go
over them in order. Reshuffle after each epoch.

* Epoch: Going over the entire dataset once
* Minibatch stochastic gradient descent
1
*0<0-n ‘ﬁZiEB Volo(xi,yi)
* Minibatch size can be 64, 128, 256, etc.



Challenges

* How to choose n?
* Learning rate schedules don’t adapt to data
 Different learning rates for different coordinates?



Momentum

e Keep memory of previous
gradient step

e lety < 1 (say=0.9)
"Vt = VUi +(1—y)n-
EZiEB Vo, . to,_, (Xi,¥i)

* New step: weighted sum of old
step and current gradient

* 0y « 01 — 1,

v =019, +0.1-09g,_,1 +
0.1-0.9%g,_, + -

* Total coefficient 1 — y*t
* Variant: Nesterov momentum




Adaptive Learning Rates

* Change LR for each parameter over course of optimization, based on
how “important” each parameter seems

* If a coordinate has lots of updates or big updates, lower LR for parameter
* If a coordinate has few updates or large updates, bigger LR for parameter

* Let g; € RP be the (estimate of) gradient at time t
*SGD: 0t < Or_1,i — NGt

* Additionally, define G;; = 5‘:1912,1' (sum of squared gradients)
N
* AdaGrad: 0 ; <« 0,1 ; — mgt,i
* gisasmall number

* Problem: learning rate is penalized “forever,” could become tiny




RMSProp

* Previously G, ; = 5:1 g]z,i
* Instead, use “momentum” on Gy ;
* Gy = 0.9G,_1; +0.197,

* Replace sum of squared gradients with a weighted sum
* Will “forget” old gradients over time

n
* RMSProp: 0;; <« O¢_1; — mgt,i




Adam

* Use momentum and RMSProp at the same time
* Plus a bias correction

* B1, B2, € hyperparameters
e/, =0.9,6, =0.999,¢ = 1078

*Myi = ,31mt—1,i + (1 - ,31)91:,1' (momentum)
* Ve = BoVi—1; + (1 — B2)gi; (RMSProp)

A~ Mmei « Vti




