
Deep Networks
Gautam Kamath

Overfitting and Generalization

• 𝑝 parameters, 𝑛 datapoints, 𝑑 dimensions

• Classical setting: 𝑝 ≈ 𝑑

• Modern neural networks: 𝑝 ≫ 𝑛𝑑
• Biggest neural networks today: > 1,000,000,000,000 parameters (1 trillion)

• MNIST dataset: 60000 images, 28 × 28 pixels → 𝑛𝑑 ≈ 47 million

• Note that it’s possible for a network with ≈ 𝑛𝑑 parameters to “memorize”
training dataset – no generalization guarantee

Avoiding Overfitting

• Bagging

• Regularization

• Regularized loss: 𝐿𝜃 𝑥, 𝑦 +
𝜆

2
𝜃 2

2

• Taking the gradient wrt 𝜃: ∇𝐿𝜃𝑡−1 𝑥, 𝑦 + 𝜆𝜃𝑡−1
• Gradient descent: 𝜃𝑡 ← 𝜃𝑡−1 − 𝜂(∇𝐿𝜃𝑡−1 𝑥, 𝑦 + 𝜆𝜃𝑡−1)

• Equivalently: 𝜃𝑡 ← 1 − 𝜂𝜆 𝜃𝑡−1 − 𝜂∇𝐿𝜃𝑡−1 𝑥, 𝑦

• Sometimes called weight decay in neural networks

• Data augmentation

Data Augmentation

• But be careful! (6 becomes 9 when rotated)

Early Stopping

Dropout

• Keep each node w.p. 𝑝 > 0 when training (independent for each
point)

• (Draw network, draw dropped out version)

• Common hyperparameters: 0.5 for hidden nodes, 0.8 for inputs

• Consider input to layer 2: 𝑧(2) = 𝑊(2)ℎ(1) + 𝑏(2)

• Since only 𝑝 fraction of ℎ(1)’s are kept (in expectation), must scale up by 1/𝑝
• (Draw ℎ(1) layer, with mask and scaling)

• Test time: no dropout, no scaling
• This is called inverted dropout (more common)
• Otherwise, scale at test time instead

Normalization

• Normalize features before training

• Compute mean: 𝜇 =
1

𝑛
∑𝑋𝑖

• Recenter data around mean: 𝑋𝑖 ← 𝑋𝑖 − 𝜇

• Compute variance of each coordinate: 𝜎𝑗
2 =

1

𝑛
∑𝑋𝑖𝑗

• Rescale data in each coordinate: 𝑋𝑖𝑗 ← 𝑋𝑖𝑗/𝜎𝑗

• (Draw transformation)

Batch Normalization

• 𝑧(𝑖) = 𝑊(𝑖)ℎ(𝑖−1) + 𝑏(𝑖)

• ℎ(𝑖) = 𝑓 𝑧 𝑖

• (draw)

• Normalize the coordinates of
𝑧(𝑖) over each minibatch
• Debate: normalize 𝑧(𝑖) or ℎ(𝑖)?

• Add scale and shift learnable
parameters

• Apply to each neuron
individually

Layer Normalization

• Batchnorm: Average within each neuron, over a batch

• Layernorm: Average within each layer, over single datapoints

• (Draw)

Optimization

• First-order methods: things which use only first derivative info

• Second-order methods: things which use second derivative info
• Take more memory, time per step, but fewer steps. Less popular in practice.

Standard First-Order Methods

• Batch gradient descent

• 𝜃 ← 𝜃 − 𝜂 ⋅
1

𝑛
∑𝑖=1
𝑛 ∇𝜃ℓ𝜃(𝑥𝑖 , 𝑦𝑖)

• Attempts to estimate 𝐸 𝑥,𝑦 ∼𝐷[∇𝜃ℓ𝜃 𝑥𝑖 , 𝑦𝑖]

• Stochastic gradient descent
• 𝜃 ← 𝜃 − 𝜂 ⋅ ∇𝜃ℓ𝜃(𝑥𝑖 , 𝑦𝑖)
• Pick a random example, take a step. Or instead of random: shuffle dataset, go

over them in order. Reshuffle after each epoch.
• Epoch: Going over the entire dataset once

• Minibatch stochastic gradient descent

• 𝜃 ← 𝜃 − 𝜂 ⋅
1

|𝐵|
∑𝑖∈𝐵 ∇𝜃ℓ𝜃(𝑥𝑖 , 𝑦𝑖)

• Minibatch size can be 64, 128, 256, etc.

Challenges

• How to choose 𝜂?

• Learning rate schedules don’t adapt to data

• Different learning rates for different coordinates?

Momentum
• Keep memory of previous

gradient step

• Let 𝛾 < 1 (say = 0.9)

• 𝑣𝑡 = 𝛾𝑣𝑡−1 + 1 − 𝛾 𝜂 ⋅
1

|𝐵|
∑𝑖∈𝐵 ∇𝜃𝑡−1ℓ𝜃𝑡−1(𝑥𝑖 , 𝑦𝑖)

• New step: weighted sum of old
step and current gradient

• 𝜃𝑡 ← 𝜃𝑡−1 − 𝑣𝑡
• 𝑣𝑡 = 0.1𝑔𝑡 + 0.1 ⋅ 0.9𝑔𝑡−1 +
0.1 ⋅ 0.92𝑔𝑡−2 +⋯
• Total coefficient 1 − 𝛾𝑡

• Variant: Nesterov momentum

Adaptive Learning Rates

• Change LR for each parameter over course of optimization, based on
how “important” each parameter seems
• If a coordinate has lots of updates or big updates, lower LR for parameter

• If a coordinate has few updates or large updates, bigger LR for parameter

• Let 𝑔𝑡 ∈ 𝐑𝑝 be the (estimate of) gradient at time 𝑡

• SGD: 𝜃𝑡,𝑖 ← 𝜃𝑡−1,𝑖 − 𝜂𝑔𝑡,𝑖

• Additionally, define 𝐺𝑡,𝑖 = ∑𝑗=1
𝑡 𝑔𝑗,𝑖

2 (sum of squared gradients)

• AdaGrad: 𝜃𝑡,𝑖 ← 𝜃𝑡−1,𝑖 −
𝜂

𝐺𝑡,𝑖+𝜀
𝑔𝑡,𝑖

• 𝜀 is a small number

• Problem: learning rate is penalized “forever,” could become tiny

RMSProp

• Previously 𝐺𝑡,𝑖 = ∑𝑗=1
𝑡 𝑔𝑗,𝑖

2

• Instead, use “momentum” on 𝐺𝑡,𝑖

• 𝐺𝑡,𝑖 = 0.9𝐺𝑡−1,𝑖 + 0.1𝑔𝑡,𝑖
2

• Replace sum of squared gradients with a weighted sum

• Will “forget” old gradients over time

• RMSProp: 𝜃𝑡,𝑖 ← 𝜃𝑡−1,𝑖 −
𝜂

𝐺𝑡,𝑖+𝜀
𝑔𝑡,𝑖

Adam

• Use momentum and RMSProp at the same time
• Plus a bias correction

• 𝛽1, 𝛽2, 𝜀 hyperparameters
• 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜀 = 10−8

• 𝑚𝑡,𝑖 = 𝛽1𝑚𝑡−1,𝑖 + 1 − 𝛽1 𝑔𝑡,𝑖 (momentum)

• 𝑣𝑡,𝑖 = 𝛽2𝑣𝑡−1,𝑖 + 1 − 𝛽2 𝑔𝑡,𝑖
2 (RMSProp)

• ෝ𝑚𝑡,𝑖 =
𝑚𝑡,𝑖

1−𝛽1
𝑡, ො𝑣𝑡,𝑖 =

𝑣𝑡,𝑖

1−𝛽2
𝑡

• 𝜃𝑡,𝑖 ← 𝜃𝑡−1,𝑖 −
𝜂

ො𝑣𝑡,𝑖+𝜀
ෝ𝑚𝑡,𝑖

