Deep Networks

Gautam Kamath

Overfitting and Generalization

- p parameters, n datapoints, d dimensions
- Classical setting: $p \approx d$
- Modern neural networks: $p \gg n d$
- Biggest neural networks today: $>1,000,000,000,000$ parameters (1 trillion)
- MNIST dataset: 60000 images, 28×28 pixels $\rightarrow n d \approx 47$ million
- Note that it's possible for a network with $\approx n d$ parameters to "memorize" training dataset - no generalization guarantee

Avoiding Overfitting

- Bagging
- Regularization
- Regularized loss: $L_{\theta}(x, y)+\frac{\lambda}{2}\|\theta\|_{2}^{2}$
- Taking the gradient wrt $\theta: \nabla L_{\theta_{t-1}}(x, y)+\lambda \theta_{t-1}$
- Gradient descent: $\theta_{t} \leftarrow \theta_{t-1}-\eta\left(\nabla L_{\theta_{t-1}}(x, y)+\lambda \theta_{t-1}\right)$
- Equivalently: $\theta_{t} \leftarrow(1-\eta \lambda) \theta_{t-1}-\eta \nabla L_{\theta_{t-1}}(x, y)$
- Sometimes called weight decay in neural networks
- Data augmentation

Data Augmentation

- But be careful! (6 becomes 9 when rotated)

Early Stopping

Dropout

- Keep each node w.p. $p>0$ when training (independent for each point)
- (Draw network, draw dropped out version)
- Common hyperparameters: 0.5 for hidden nodes, 0.8 for inputs
- Consider input to layer 2: $z^{(2)}=W^{(2)} h^{(1)}+b^{(2)}$
- Since only p fraction of $h^{(1)}$'s are kept (in expectation), must scale up by $1 / p$
- (Draw $h^{(1)}$ layer, with mask and scaling)
- Test time: no dropout, no scaling
- This is called inverted dropout (more common)
- Otherwise, scale at test time instead

Normalization

- Normalize features before training
- Compute mean: $\mu=\frac{1}{n} \sum X_{i}$
- Recenter data around mean: $X_{i} \leftarrow X_{i}-\mu$
- Compute variance of each coordinate: $\sigma_{j}^{2}=\frac{1}{n} \sum X_{i j}$
- Rescale data in each coordinate: $X_{i j} \leftarrow X_{i j} / \sigma_{j}$
- (Draw transformation)

Batch Normalization

- $Z^{(i)}=W^{(i)} h^{(i-1)}+b^{(i)}$
- $h^{(i)}=f\left(z^{(i)}\right)$
- (draw)
- Normalize the coordinates of $z^{(i)}$ over each minibatch
- Debate: normalize $z^{(i)}$ or $h^{(i)}$?
- Add scale and shift learnable parameters
- Apply to each neuron individually

Layer Normalization

- Batchnorm: Average within each neuron, over a batch
- Layernorm: Average within each layer, over single datapoints
- (Draw)

Optimization

- First-order methods: things which use only first derivative info
- Second-order methods: things which use second derivative info
- Take more memory, time per step, but fewer steps. Less popular in practice.

Standard First-Order Methods

- Batch gradient descent
- $\theta \leftarrow \theta-\eta \cdot \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} \ell_{\theta}\left(x_{i}, y_{i}\right)$
- Attempts to estimate $E_{(x, y) \sim D}\left[\nabla_{\theta} \ell_{\theta}\left(x_{i}, y_{i}\right)\right]$
- Stochastic gradient descent
- $\theta \leftarrow \theta-\eta \cdot \nabla_{\theta} \ell_{\theta}\left(x_{i}, y_{i}\right)$
- Pick a random example, take a step. Or instead of random: shuffle dataset, go over them in order. Reshuffle after each epoch.
- Epoch: Going over the entire dataset once
- Minibatch stochastic gradient descent
- $\theta \leftarrow \theta-\eta \cdot \frac{1}{|B|} \sum_{i \in B} \nabla_{\theta} \ell_{\theta}\left(x_{i}, y_{i}\right)$
- Minibatch size can be $64,128,256$, etc.

Challenges

- How to choose η ?
- Learning rate schedules don't adapt to data
- Different learning rates for different coordinates?

Momentum

- Keep memory of previous gradient step
- Let $\gamma<1$ (say $=0.9)$
- $v_{t}=\gamma v_{t-1}+(1-\gamma) \eta$.
$\frac{1}{|B|} \sum_{i \in B} \nabla_{\theta_{t-1}} \ell_{\theta_{t-1}}\left(x_{i}, y_{i}\right)$
- New step: weighted sum of old step and current gradient
- $\theta_{t} \leftarrow \theta_{t-1}-v_{t}$
- $v_{t}=0.1 g_{t}+0.1 \cdot 0.9 g_{t-1}+$ $0.1 \cdot 0.9^{2} g_{t-2}+\cdots$

- Total coefficient $1-\gamma^{t}$
- Variant: Nesterov momentum

Adaptive Learning Rates

- Change LR for each parameter over course of optimization, based on how "important" each parameter seems
- If a coordinate has lots of updates or big updates, lower LR for parameter
- If a coordinate has few updates or large updates, bigger LR for parameter
- Let $g_{t} \in \mathbf{R}^{p}$ be the (estimate of) gradient at time t
- SGD: $\theta_{t, i} \leftarrow \theta_{t-1, i}-\eta g_{t, i}$
- Additionally, define $G_{t, i}=\sum_{j=1}^{t} g_{j, i}^{2}$ (sum of squared gradients)
- AdaGrad: $\theta_{t, i} \leftarrow \theta_{t-1, i}-\frac{\eta}{\sqrt{G_{t, i}+\varepsilon}} g_{t, i}$
- ε is a small number
- Problem: learning rate is penalized "forever," could become tiny

RMSProp

- Previously $G_{t, i}=\sum_{j=1}^{t} g_{j, i}^{2}$
- Instead, use "momentum" on $G_{t, i}$
- $G_{t, i}=0.9 G_{t-1, i}+0.1 g_{t, i}^{2}$
- Replace sum of squared gradients with a weighted sum
- Will "forget" old gradients over time
- RMSProp: $\theta_{t, i} \leftarrow \theta_{t-1, i}-\frac{\eta}{\sqrt{G_{t, i}+\varepsilon}} g_{t, i}$

Adam

- Use momentum and RMSProp at the same time
- Plus a bias correction
- $\beta_{1}, \beta_{2}, \varepsilon$ hyperparameters
- $\beta_{1}=0.9, \beta_{2}=0.999, \varepsilon=10^{-8}$
- $m_{t, i}=\beta_{1} m_{t-1, i}+\left(1-\beta_{1}\right) g_{t, i}$ (momentum)
- $v_{t, i}=\beta_{2} v_{t-1, i}+\left(1-\beta_{2}\right) g_{t, i}^{2}$ (RMSProp)
- $\widehat{m}_{t, i}=\frac{m_{t, i}}{1-\beta_{1}^{t}} \hat{v}_{t, i}=\frac{v_{t, i}}{1-\beta_{2}^{t}}$
- $\theta_{t, i} \leftarrow \theta_{t-1, i}-\frac{\eta}{\sqrt{\hat{v}_{t, i}+\varepsilon}} \widehat{m}_{t, i}$

