Recurrent Neural Networks

Gautam Kamath

Sequence Models

- Stock prices: given past stock prices $x_1, ..., x_n$, predict $\hat{x}_t \sim \Pr(x_t | x_1, ..., x_{t-1})$
- Language modelling: Given phrase, how likely is it?
 - Pr[The cat is black] versus Pr[is black cat the]
 - Note Pr[The cat is black] = Pr[The] · Pr[cat|The] · Pr[is|The cat] · Pr[black|The cat is]
 - Next word prediction: predict $\hat{x}_t \sim \Pr(x_t | x_1, ..., x_{t-1})$

Idea: Summarize past observations with "state"

- Summary h_t (vector). Then $\hat{x}_t \sim \Pr[x_t | h_t]$.
- h_t is some function of x_1, \ldots, x_{t-1}
- Let $h_1 = g(\vec{0}, x_1)$, where g is some function. Then $\hat{y}_1 \sim \Pr[y_1|h_1]$

• For next word prediction, think $y_1 = x_2$

- Let $h_2 = g(h_1, x_2)$. Then $\hat{y}_2 \sim \Pr[y_2 | h_2]$
- (Draw in diagram form: $x_{t-1} \rightarrow h_{t-1} \rightarrow \hat{y}_{t-1}$ and same for t)
- But how do we determine the functions on each edge here?
- How do we compute hidden state?

Recurrent Neural Networks

- $h_t = f(h_{t-1}, x_t, \theta)$
 - Function of previous hidden state, current input, parameter vector
 - First two are time indexed, but parameter vector is fixed
 - A type of "parameter sharing" (like CNNs)
 - Choose *f* to be a neural network
- (Draw: $x \rightarrow_U h$, self-loop with box on h with parameter W, then draw unrolled)
 - $h_t = \tanh(Wh_{t-1} + Ux_t + b)$
- (Add on $h \rightarrow_V \hat{y} \rightarrow \ell \leftarrow y$)
 - $\hat{y}_t = \text{softmax}(Vh_t + c), \ell(\{x_1, \dots, x_n\}, \{y_1, \dots, y_n\}\} = \sum_{t=1}^n \ell(\hat{y}_t, y_t)$

Example: Next Character Prediction

- (Draw: next char prediction. Input is prefix of "hello" (one-hot encoding), choose some hidden layer values (3-dim), and output predictions (4-dim), mark them right or wrong for predictions "ello")
 - (Draw: lines showing at test time you feed it back into itself)

Other types of sequence problems

- Many to one (draw)
 - Sentiment classification
 - "I hated this movie" label = -1, "This movie was great!" label = +1
- One to many (draw)
 - Image captioning
- Many to many (draw)
 - Machine translation, "the cat is black" to "le chat est noir"
 - May need to see whole input before translating: "对不起" to "sorry"

Sequential versus parallel

Sequential structure is more powerful...

But parallel enables teacher forcing

Optimization for RNNs

- "Backpropagation through time"
- Vanishing or exploding gradients
 - Gradient magnitude goes to 0 or becomes very large, a symptom of gradients through many layers
- Truncate gradient chains after some τ steps
- Gradient clipping (draw)
 - If $||g||_2 \ge v$, then $g \leftarrow (g/||g||_2)v$

Gated Recurrent Unit (GRU) (Draw as we go)

- Three reasonable things to do with hidden state h_t at a given time:
 - 1. Let it be a normal update $(h_t = \tanh(Ux_t + Wh_{t-1} + b))$
 - 2. Drop the past hidden state and start again $(h_t = \tanh(Ux_t + b))$
 - 3. Just use the previous hidden state ($h_t = h_{t-1}$)
- Define $R_t = \sigma(U^{(r)}x_t + W^{(r)}h_{t-1} + b^{(r)}), Z_t = \sigma(U^{(z)}x_t + W^{(z)}h_{t-1} + b^{(z)})$
 - Both R_t (reset) and Z_t (update) will be same dimension at h_t , all entries in [0,1]
- Let $\tilde{h}_t = \tanh(Ux_t + W(R_t \odot h_{t-1}) + b)$
 - ⊙ is an entry-wise product. If reset = 0, then we ignore past hidden state (2.), otherwise regular update (1.)
- $h_t = Z_t \odot h_{t-1} + (1 Z_t) \odot \tilde{h}_t$
 - If update = 1, then we use previous hidden state (3.). Otherwise, use proposal.
- Not binary: actually do some linear combination of these
- More complex structures (Long short-term memory, LSTM)

Bidirectional RNNs

I went to the bank...

- 1. Of the river
- 2. To withdraw money

Deep RNNs

Encoder-Decoder Architecture

E.g., machine translation