
Recurrent Neural Networks
Gautam Kamath

Sequence Models

• Stock prices: given past stock prices 𝑥1, … , 𝑥𝑛, predict ො𝑥𝑡 ∼
Pr(𝑥𝑡|𝑥1, … , 𝑥𝑡−1)

• Language modelling: Given phrase, how likely is it?
• Pr[The cat is black] versus Pr[is black cat the]

• Note Pr[The cat is black] = Pr The ⋅ Pr cat|The ⋅ Pr is|The cat ⋅
Pr black|The cat is

• Next word prediction: predict ො𝑥𝑡 ∼ Pr(𝑥𝑡|𝑥1, … , 𝑥𝑡−1)

Idea: Summarize past observations with
“state”
• Summary ℎ𝑡 (vector). Then ො𝑥𝑡 ∼ Pr[𝑥𝑡|ℎ𝑡].

• ℎ𝑡 is some function of 𝑥1, … , 𝑥𝑡−1

• Let ℎ1 = 𝑔 0, 𝑥1 , where 𝑔 is some function. Then ො𝑦1 ∼ Pr 𝑦1 ℎ1
• For next word prediction, think 𝑦1 = 𝑥2

• Let ℎ2 = 𝑔 ℎ1, 𝑥2 . Then ො𝑦2 ∼ Pr 𝑦2 ℎ2
• (Draw in diagram form: 𝑥𝑡−1 → ℎ𝑡−1 → ො𝑦𝑡−1 and same for 𝑡)

• But how do we determine the functions on each edge here?

• How do we compute hidden state?

Recurrent Neural Networks

• ℎ𝑡 = 𝑓 ℎ𝑡−1, 𝑥𝑡 , 𝜃
• Function of previous hidden state, current input, parameter vector

• First two are time indexed, but parameter vector is fixed
• A type of “parameter sharing” (like CNNs)

• Choose 𝑓 to be a neural network

• (Draw: 𝑥 →𝑈 ℎ, self-loop with box on ℎ with parameter 𝑊, then
draw unrolled)
• ℎ𝑡 = tanh(𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏)

• (Add on ℎ →𝑉 ො𝑦 → ℓ ← 𝑦)
• ො𝑦𝑡 = softmax(𝑉ℎ𝑡 + 𝑐), ℓ 𝑥1, … , 𝑥𝑛 , 𝑦1, … , 𝑦𝑛 = σ𝑡=1

𝑛 ℓ(ො𝑦𝑡, 𝑦𝑡)

Example: Next Character Prediction

• (Draw: next char prediction. Input is prefix of “hello” (one-hot
encoding), choose some hidden layer values (3-dim), and output
predictions (4-dim), mark them right or wrong for predictions “ello”)
• (Draw: lines showing at test time you feed it back into itself)

Other types of sequence problems

• Many to one (draw)
• Sentiment classification

• “I hated this movie” label = -1, “This movie was great!” label = +1

• One to many (draw)
• Image captioning

• Many to many (draw)
• Machine translation, “the cat is black” to “le chat est noir”

• May need to see whole input before translating: “对不起” to “sorry”

Sequential versus parallel

Sequential structure is more powerful…

But parallel enables teacher forcing

Optimization for RNNs

• “Backpropagation through time”

• Vanishing or exploding gradients
• Gradient magnitude goes to 0 or becomes very large, a symptom of gradients

through many layers

• Truncate gradient chains after some 𝜏 steps

• Gradient clipping (draw)
• If 𝑔 2 ≥ 𝑣, then 𝑔 ← 𝑔/ 𝑔 2 𝑣

Gated Recurrent Unit (GRU) (Draw as we go)

• Three reasonable things to do with hidden state ℎ𝑡 at a given time:
1. Let it be a normal update (ℎ𝑡 = tanh(𝑈𝑥𝑡 +𝑊ℎ𝑡−1 + 𝑏))
2. Drop the past hidden state and start again (ℎ𝑡 = tanh(𝑈𝑥𝑡 + 𝑏))
3. Just use the previous hidden state (ℎ𝑡 = ℎ𝑡−1)

• Define 𝑅𝑡 = 𝜎(𝑈 𝑟 𝑥𝑡 +𝑊 𝑟 ℎ𝑡−1 + 𝑏 𝑟), 𝑍𝑡 = 𝜎(𝑈 𝑧 𝑥𝑡 +𝑊 𝑧 ℎ𝑡−1 + 𝑏 𝑧)
• Both 𝑅𝑡 (reset) and 𝑍𝑡 (update) will be same dimension at ℎ𝑡, all entries in [0,1]

• Let ෨ℎ𝑡 = tanh(𝑈𝑥𝑡 +𝑊 𝑅𝑡 ⊙ℎ𝑡−1 + 𝑏)
• ⊙ is an entry-wise product. If reset = 0, then we ignore past hidden state (2.), otherwise

regular update (1.)

• ℎ𝑡 = 𝑍𝑡 ⊙ℎ𝑡−1 + 1 − 𝑍𝑡 ⊙ ෨ℎ𝑡
• If update = 1, then we use previous hidden state (3.). Otherwise, use proposal.

• Not binary: actually do some linear combination of these

• More complex structures (Long short-term memory, LSTM)

Bidirectional RNNs

I went to the bank…

1. Of the river

2. To withdraw money

Deep RNNs

Encoder-Decoder Architecture

E.g., machine translation

