
𝑘-Means Clustering and
Gaussian Mixture Models

Gautam Kamath

Clustering

• Canonical unsupervised learning problem
• Versus supervised learning

• (Draw two cluster picture)

• Given 𝑋 = {𝑋1, … , 𝑋𝑛}, partition into sets 𝐶1, … , 𝐶𝑘
• E.g., say if 𝑛 = 5, 𝑘 = 3, then 𝐶1 = 𝑋1, 𝑋5 , 𝐶2 = {𝑋2}, 𝐶3 = {𝑋3, 𝑋4}

• 𝑘 is a hyperparameter

• Goals (informally):
• Points in a cluster are similar, points in different clusters are dissimilar

𝑘-Means Clustering

• min
partitions 𝐶1,…,𝐶𝑘

σ𝑗=1
𝑘 𝑊(𝐶𝑗)

• 𝑊(⋅) is a function that measures “cost” for points in cluster 𝑗

• For 𝑘-means: 𝑊 𝐶𝑗 =
1

|𝐶𝑗|
σ
𝑋𝑖,𝑋𝑖

′∈𝐶𝑗
𝑋𝑖 − 𝑋𝑖

′
2
2

• Equivalently: 𝑊 𝐶𝑗 = 2σ𝑋𝑖 ∈𝐶𝑗
𝑋𝑖 − 𝜇𝑗 2

2
, where 𝜇𝑗 =

1

𝐶𝑗
σ𝑋𝑖 ∈𝐶𝑗

𝑋𝑖

• How to optimize?

• Slow algorithm: Try all partitions (there’s a lot, roughly 𝑘𝑛)

• Usually: Lloyd’s algorithm

Lloyd’s Algorithm

1. Initialize partition 𝐶1, … , 𝐶𝑘 (could be random or carefully chosen)

2. For each cluster 𝐶𝑗, compute centroid 𝜇𝑗 =
1

𝐶𝑗
σ𝑋𝑖 ∈𝐶𝑗

𝑋𝑖

3. For each point 𝑋𝑖 assign it to cluster with nearest centroid

• Assign it to cluster with index argmin
j

𝑋𝑖 − 𝜇𝑗 2

2

4. Go to step 2, repeat until convergence

Main idea: given clusters, compute centers. Then given centers,
compute clusters. Repeat.

Example

Comments on 𝑘-Means/Lloyd’s Algorithm

• Drawbacks
• Can be slow to converge

• May only converge to a local optimum
• NP-hard to optimize even to a constant factor approximation

• Solutions
• Repeat many times with different initializations, take best

𝑘-Means with Restarts

Comments on 𝑘-Means/Lloyd’s Algorithm

• Drawbacks
• Can be slow to converge

• May only converge to a local optimum
• NP-hard to optimize even to a constant factor approximation

• Solutions
• Repeat many times with different initializations, take best

• Do better initializations (e.g., 𝑘-means++)

Generative Models

• Given 𝑋1, … , 𝑋𝑛 drawn i.i.d. from some distribution 𝑝𝜃
• Goal: Output Ƹ𝑝 ≈ 𝑝𝜃
• Try to estimate the distribution which generated the dataset

• A simple case: 𝑋1, … , 𝑋𝑛 ∼ 𝑁(𝜇, 1)

• 𝑝𝜇 𝑥 =
1

2𝜋
exp −

𝑥−𝜇 2

2

• MLE: ො𝜇 = argmax
𝜇

σ𝑖=1
𝑛 log 𝑝𝜇 𝑋𝑖 = argmax

𝜇
σ𝑖=1
𝑛 − 𝑋𝑖 − 𝜇 2 =

1

𝑛
σ𝑖=1
𝑛 𝑋𝑖

• Output Ƹ𝑝 = 𝑁(ො𝜇, 1)

Mixture Model

• 𝑝𝜃 𝑥 = σ𝑗=1
𝑘 𝜋𝑗𝑝𝜃 𝑗

𝑗
𝑥

• 𝜋𝑗’s are mixing weights: 𝜋𝑗 ≥ 0 and σ𝑗=1
𝑘 𝜋𝑗 = 1

• 𝑝
𝜃 𝑗
𝑗

𝑥 is the PDF for component 𝑗

• Density is a convex combination of a collection of other densities

• Intuitive way is to think about the sampling procedure
1. Draw sample ∈ {1,… , 𝑘} according to distribution 𝜋

2. Output a sample from 𝑝
𝜃 𝑗
𝑗

𝑥

• (Draw picture of male and female human height distributions)

Gaussian Mixture Model

• 𝑝𝜃 𝑥 = σ𝑗=1
𝑘 𝜋𝑗𝑁(𝜇𝑗 , Σ𝑗 , 𝑥)

• Note: 𝑁(𝜇𝑗 , Σ𝑗 , 𝑥) is the PDF of 𝑁(𝜇𝑗 , Σ𝑗) at the point 𝑥

• (Draw picture of 3-GMM)

• Different from clustering
• Clustering is a non-stochastic setting

• Goal is a bit different: identify clusters vs estimate parameters

Gaussian Mixture Models

• Problem would be easy if we knew which component each came from

• Let 𝑍𝑖 be the component that 𝑋𝑖 was sampled from, 𝑍𝑖 ∈ {1, … , 𝑘}

• If we knew then

෠𝜃 = argmax
𝜃

෍

𝑖=1

𝑛

log 𝑝𝜃 𝑥𝑖 = arg max
𝜃= 𝜋𝑗,𝜇𝑗,Σ𝑗

෍

𝑖=1

𝑛

log ෍

𝑗=1

𝑘

𝟏 𝑍𝑖=𝑗 𝜋𝑗𝑁(𝜇𝑗 , Σ𝑗 , 𝑥)

ො𝜋𝑗 =
1

𝑛
෍

𝑍𝑖=𝑗

1 , Ƹ𝜇𝑗 =
1

σ𝑍𝑖=𝑗
1
෍

𝑍𝑖=𝑗

𝑋𝑖 , ෠Σ𝑗 =
1

σ𝑍𝑖=𝑗
1
෍

𝑍𝑖=𝑗

𝑋𝑖 − Ƹ𝜇𝑗 𝑋𝑖 − Ƹ𝜇𝑗
𝑇

• If we knew the components, then just take empirical estimates… but we don’t.

Expectation Maximization (EM)

• Problem would have been easy if we knew which component each
point came from
• May be impossible to tell in some cases (draw point between two Gaussians)

• Instead, say it came from multiple components fractionally (50-50 drawing)

• Expectation Maximization: a “soft” version of 𝑘-means
• A point belongs to multiple components instead of just one

1. Given 𝜃, fractionally assign points 𝑋𝑖 to mixture components

2. Given fractional assignment of 𝑋𝑖 to clusters, compute best 𝜃

Deriving the EM Updates, starting at
argmax

𝜃
σ𝑖 log 𝑝𝜃 𝑋𝑖

log 𝑝𝜃 𝑋𝑖

= log෍
𝑗=1

𝑘

𝑝𝜃 𝑋𝑖 , 𝑍𝑖 = 𝑗

= log෍
𝑗=1

𝑘 𝑞𝑖 𝑍𝑖 = 𝑗

𝑞𝑖 𝑍𝑖 = 𝑗
𝑝𝜃 𝑋𝑖 , 𝑍𝑖 = 𝑗

(think 𝑞𝑖 as a “guess” for the
distribution of 𝑍𝑖)

= log෍
𝑗=1

𝑘

𝑞𝑖 𝑍𝑖 = 𝑗
𝑝𝜃 𝑋𝑖 , 𝑍𝑖 = 𝑗

𝑞𝑖 𝑍𝑖 = 𝑗

= log E𝑍𝑖∼𝑞𝑖
𝑝𝜃 𝑋𝑖 , 𝑍𝑖
𝑞𝑖 𝑍𝑖

≥ E𝑍𝑖∼𝑞𝑖 log
𝑝𝜃 𝑋𝑖 , 𝑍𝑖
𝑞𝑖 𝑍𝑖

(by Jensen’s inequality)

= σ𝑗=1
𝑘 𝑞𝑖 𝑍𝑖 = 𝑗 log 𝑝𝜃 𝑋𝑖 , 𝑍𝑖 = 𝑗 −
σ𝑗=1
𝑘 𝑞𝑖 𝑍𝑖 = 𝑗 log 𝑞𝑖 𝑍𝑖 = 𝑗

In summary

argmax
𝜃

෍
𝑖
log 𝑝𝜃 𝑋𝑖

≥ arg max
𝜃,{𝑞𝑖}

෍
𝑖
෍

𝑗=1

𝑘

𝑞𝑖 𝑍𝑖 = 𝑗 log 𝑝𝜃 𝑋𝑖 , 𝑍𝑖 = 𝑗 −෍
𝑗=1

𝑘

𝑞𝑖 𝑍𝑖 = 𝑗 log 𝑞𝑖 𝑍𝑖 = 𝑗

E Step (Expectation Step)

arg max
𝜃,{𝑞𝑖}

෍
𝑖
෍

𝑗=1

𝑘

𝑞𝑖 𝑍𝑖 = 𝑗 log 𝑝𝜃 𝑋𝑖 , 𝑍𝑖 = 𝑗 −෍
𝑗=1

𝑘

𝑞𝑖 𝑍𝑖 = 𝑗 log 𝑞𝑖 𝑍𝑖 = 𝑗

• E step: fix 𝜃, optimize 𝑞𝑖’s (let’s focus on a single 𝑞𝑖 for simplicity)

argmax
𝑞𝑖

෍
𝑗=1

𝑘

𝑞𝑖 𝑍𝑖 = 𝑗 log 𝑝𝜃 𝑋𝑖 , 𝑍𝑖 = 𝑗 − log 𝑞𝑖 𝑍𝑖 = 𝑗

= argmax
𝑞𝑖

෍
𝑗=1

𝑘

𝑞𝑖 𝑍𝑖 = 𝑗 log 𝑝𝜃 𝑍𝑖 = 𝑗|𝑋𝑖 + log 𝑝𝜃 𝑋𝑖 − log 𝑞𝑖 𝑍𝑖 = 𝑗

(Drop constant log 𝑝𝜃 𝑋𝑖)

= argmin
𝑞𝑖

E𝑍𝑖∼𝑞𝑖 log
𝑞𝑖 𝑍𝑖

𝑝𝜃 𝑍𝑖|𝑋𝑖

This is the KL Divergence between distributions 𝑞𝑖 and 𝑝𝜃(⋅ |𝑋𝑖). It is always non-
negative, and minimized when 𝑞𝑖 𝑍𝑖 = 𝑝𝜃 𝑍𝑖|𝑋𝑖 , so choose 𝑞𝑖 in this way.

M Step (Maximization Step)

arg max
𝜃,{𝑞𝑖}

෍
𝑖
෍

𝑗=1

𝑘

𝑞𝑖 𝑍𝑖 = 𝑗 log 𝑝𝜃 𝑋𝑖 , 𝑍𝑖 = 𝑗 −෍
𝑗=1

𝑘

𝑞𝑖 𝑍𝑖 = 𝑗 log 𝑞𝑖 𝑋𝑖 , 𝑍𝑖 = 𝑗

• M step: Fix 𝑞𝑖’s, optimize 𝜃

argmax
𝜃

෍
𝑖=1

𝑛

෍
𝑗=1

𝑘

𝑞𝑖 𝑍𝑖 = 𝑗 log 𝑝𝜃 𝑋𝑖 , 𝑍𝑖 = 𝑗

• Often solvable in closed form

The Algorithm

1. Initialize 𝜃 parameters

2. Run E step

3. Run M step

4. Repeat 2, 3

EM for GMMs

• E step: 𝑞𝑖 𝑍𝑖 = 𝑗 = 𝑝𝜃 𝑍𝑖 = 𝑗 𝑋𝑖 =
𝑝𝜃 𝑍𝑖=𝑗,𝑋𝑖

𝑝𝜃(𝑋𝑖)
=

𝜋𝑗𝑁 𝜇𝑗,Σ𝑗,𝑋𝑖

σℓ=1
𝑘 𝜋ℓ𝑁 𝜇ℓ,Σℓ,𝑋𝑖

• Compute for all 𝑋𝑖, for all 𝑗 ∈ {1,… , 𝑘}

• M step (for simplicity, 1D, variance = 1. 𝑝𝜃 𝑥 = σ𝜋𝑗𝑁 𝜇𝑗 , 1, 𝑥):

argmax
𝜃

෍
𝑖=1

𝑛

෍
𝑗=1

𝑘

𝑞𝑖 𝑍𝑖 = 𝑗 log 𝑝𝜃 𝑋𝑖 , 𝑍𝑖 = 𝑗

= argmax
𝜃

෍
𝑖=1

𝑛

෍
𝑗=1

𝑘

𝑞𝑖 𝑍𝑖 = 𝑗 log 𝜋𝑗
1

2𝜋
exp −

𝑋𝑖 − 𝜇𝑗
2

2

= argmax
𝜃

෍
𝑖=1

𝑛

෍
𝑗=1

𝑘

𝑞𝑖 𝑍𝑖 = 𝑗 log 𝜋𝑗 −
𝑋𝑖 − 𝜇𝑗

2

2

Focus on optimizing 𝜇𝑗

argmax
𝜃

෍
𝑖=1

𝑛

෍
𝑗=1

𝑘

𝑞𝑖 𝑍𝑖 = 𝑗 −
𝑋𝑖 − 𝜇𝑗

2

2

Optimize by taking derivative wrt 𝜇𝑗 and setting = 0

෍
𝑖=1

𝑛

−𝑞𝑖 𝑍𝑖 = 𝑗 𝑋𝑖 − 𝜇𝑗 = 0

Rearranging…

𝜇𝑗 =
σ𝑖 𝑞𝑖(𝑍𝑖 = 𝑗)𝑋𝑖
σ𝑖 𝑞𝑖(𝑍𝑖 = 𝑗)

Focus on optimizing 𝜋𝑗

argmax
𝜃

෍
𝑖=1

𝑛

෍
𝑗=1

𝑘

𝑞𝑖 𝑍𝑖 = 𝑗 log 𝜋𝑗 s. t.෍

ℓ=1

𝑘

𝜋ℓ = 1

argmax
𝜃

෍
𝑖=1

𝑛

෍
𝑗=1

𝑘

𝑞𝑖 𝑍𝑖 = 𝑗 log 𝜋𝑗 + 𝜆 ෍
𝑗=1

𝑘

𝜋𝑗 − 1

Differentiate wrt 𝜋𝑗 , set equal to 0

෍
𝑖=1

𝑛 𝑞𝑖 𝑍𝑖 = 𝑗

𝜋𝑗
+ 𝜆 = 0

𝜋𝑗 = −
1

𝜆
෍

𝑖=1

𝑛

𝑞𝑖 𝑍𝑖 = 𝑗

Focus on optimizing 𝜋𝑗

𝜋𝑗 = −
1

𝜆
෍

𝑖=1

𝑛

𝑞𝑖 𝑍𝑖 = 𝑗

But what is 𝜆? Note

1 =෍
𝑗=1

𝑘

𝜋𝑗 = −
1

𝜆
෍

𝑖=1

𝑛

෍
𝑗=1

𝑘

𝑞𝑖 𝑍𝑖 = 𝑗 = −
𝑛

𝜆

So 𝜆 = −𝑛.

Therefore

𝜋𝑗 =
1

𝑛
෍

𝑖=1

𝑛

𝑞𝑖 𝑍𝑖 = 𝑗

Example

