k-Means Clustering and Gaussian Mixture Models

Gautam Kamath

Clustering

- Canonical unsupervised learning problem
- Versus supervised learning
- (Draw two cluster picture)
- Given $X=\left\{X_{1}, \ldots, X_{n}\right\}$, partition into sets C_{1}, \ldots, C_{k}
- E.g., say if $n=5, k=3$, then $C_{1}=\left\{X_{1}, X_{5}\right\}, C_{2}=\left\{X_{2}\right\}, C_{3}=\left\{X_{3}, X_{4}\right\}$
- k is a hyperparameter
- Goals (informally):
- Points in a cluster are similar, points in different clusters are dissimilar

k-Means Clustering

- $\min _{\text {partitions } C_{1}, \ldots, C_{k}} \sum_{j=1}^{k} W\left(C_{j}\right)$
- $W(\cdot)$ is a function that measures "cost" for points in cluster j
- For k-means: $W\left(C_{j}\right)=\frac{1}{\left|C_{j}\right|} \sum_{X_{i}, X_{i}^{\prime} \in C_{j}}\left\|X_{i}-X_{i}^{\prime}\right\|_{2}^{2}$
- Equivalently: $W\left(C_{j}\right)=2 \sum_{X_{i} \in C_{j}}\left\|X_{i}-\mu_{j}\right\|_{2}^{2}$, where $\mu_{j}=\frac{1}{\left|C_{j}\right|} \sum_{X_{i} \in C_{j}} X_{i}$
- How to optimize?
- Slow algorithm: Try all partitions (there's a lot, roughly k^{n})
- Usually: Lloyd's algorithm

Lloyd's Algorithm

1. Initialize partition C_{1}, \ldots, C_{k} (could be random or carefully chosen)
2. For each cluster C_{j}, compute centroid $\mu_{j}=\frac{1}{\left|C_{j}\right|} \sum_{X_{i} \in C_{j}} X_{i}$
3. For each point X_{i} assign it to cluster with nearest centroid

- Assign it to cluster with index arg $\min _{\mathrm{j}}\left\|X_{i}-\mu_{j}\right\|_{2}^{2}$

4. Go to step 2 , repeat until convergence

Main idea: given clusters, compute centers. Then given centers, compute clusters. Repeat.

Example

Iteration 1, Step 2b

Comments on k-Means/Lloyd's Algorithm

- Drawbacks
- Can be slow to converge
- May only converge to a local optimum
- NP-hard to optimize even to a constant factor approximation
- Solutions
- Repeat many times with different initializations, take best

k-Means with Restarts

Comments on k-Means/Lloyd's Algorithm

- Drawbacks
- Can be slow to converge
- May only converge to a local optimum
- NP-hard to optimize even to a constant factor approximation
- Solutions
- Repeat many times with different initializations, take best
- Do better initializations (e.g., k-means++)

Generative Models

- Given X_{1}, \ldots, X_{n} drawn i.i.d. from some distribution p_{θ}
- Goal: Output $\hat{p} \approx p_{\theta}$
- Try to estimate the distribution which generated the dataset
- A simple case: $X_{1}, \ldots, X_{n} \sim N(\mu, 1)$
- $p_{\mu}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2}\right)$
- MLE: $\hat{\mu}=\arg \max _{\mu} \sum_{i=1}^{n} \log p_{\mu}\left(X_{i}\right)=\arg \max _{\mu} \sum_{i=1}^{n}-\left(X_{i}-\mu\right)^{2}=$ $\frac{1}{n} \sum_{i=1}^{n} X_{i}$
- Output $\hat{p}=N(\hat{\mu}, 1)$

Mixture Model

- $p_{\theta}(x)=\sum_{j=1}^{k} \pi_{j} p_{\theta^{(j)}}^{(j)}(x)$
- π_{j} 's are mixing weights: $\pi_{j} \geq 0$ and $\sum_{j=1}^{k} \pi_{j}=1$
- $p_{\theta^{(j)}}^{(j)}(x)$ is the PDF for component j
- Density is a convex combination of a collection of other densities
- Intuitive way is to think about the sampling procedure

1. Draw sample $\in\{1, \ldots, k\}$ according to distribution π
2. Output a sample from $p_{\theta^{(j)}}^{(j)}(x)$

- (Draw picture of male and female human height distributions)

Gaussian Mixture Model

- $p_{\theta}(x)=\sum_{j=1}^{k} \pi_{j} N\left(\mu_{j}, \Sigma_{j}, x\right)$
- Note: $N\left(\mu_{j}, \Sigma_{j}, x\right)$ is the PDF of $N\left(\mu_{j}, \Sigma_{j}\right)$ at the point x
- (Draw picture of 3-GMM)
- Different from clustering
- Clustering is a non-stochastic setting
- Goal is a bit different: identify clusters vs estimate parameters

Gaussian Mixture Models

- Problem would be easy if we knew which component each came from
- Let Z_{i} be the component that X_{i} was sampled from, $Z_{i} \in\{1, \ldots, k\}$
- If we knew then

$$
\begin{gathered}
\hat{\theta}=\arg \max _{\theta} \sum_{i=1}^{n} \log p_{\theta}\left(x_{i}\right)=\arg \max _{\theta=\left\{\left(\pi_{j}, \mu_{j}, \Sigma_{j}\right)\right\}} \sum_{i=1}^{n} \log \left(\sum_{j=1}^{k} \mathbf{1}_{\left\{z_{i}=j\right\}} \pi_{j} N\left(\mu_{j}, \Sigma_{j}, x\right)\right) \\
\hat{\pi}_{j}=\frac{1}{n} \sum_{Z_{i}=j} 1, \hat{\mu}_{j}=\frac{1}{\sum_{z_{i}=j} 1} \sum_{Z_{i}=j} X_{i}, \hat{\Sigma}_{j}=\frac{1}{\sum_{z_{i}=j} 1} \sum_{Z_{i}=j}\left(X_{i}-\hat{\mu}_{j}\right)\left(X_{i}-\hat{\mu}_{j}\right)^{T}
\end{gathered}
$$

- If we knew the components, then just take empirical estimates... but we don't.

Expectation Maximization (EM)

- Problem would have been easy if we knew which component each point came from
- May be impossible to tell in some cases (draw point between two Gaussians)
- Instead, say it came from multiple components fractionally (50-50 drawing)
- Expectation Maximization: a "soft" version of k-means
- A point belongs to multiple components instead of just one

1. Given θ, fractionally assign points X_{i} to mixture components
2. Given fractional assignment of X_{i} to clusters, compute best θ

Deriving the EM Updates, starting at

 $\arg \max _{\theta} \sum_{i} \log p_{\theta}\left(X_{i}\right)$$$
\begin{gathered}
\log p_{\theta}\left(X_{i}\right) \\
=\log \sum_{j=1}^{k} p_{\theta}\left(X_{i}, Z_{i}=j\right) \\
=\log \sum_{j=1}^{k} \frac{q_{i}\left(Z_{i}=j\right)}{q_{i}\left(Z_{i}=j\right)} p_{\theta}\left(X_{i}, Z_{i}=j\right) \\
\text { (think } q_{i} \text { as a "guess" for the } \\
\text { distribution of } \left.Z_{i}\right) \\
=\log \sum_{j=1}^{k} q_{i}\left(Z_{i}=j\right) \frac{p_{\theta}\left(X_{i}, Z_{i}=j\right)}{q_{i}\left(Z_{i}=j\right)} \\
=\log \mathrm{E}_{Z_{i} \sim q_{i}}\left[\frac{p_{\theta}\left(X_{i}, Z_{i}\right)}{q_{i}\left(Z_{i}\right)}\right]
\end{gathered}
$$ $\geq \mathrm{E}_{Z_{i} \sim q_{i}} \log \left[\frac{p_{\theta}\left(X_{i}, Z_{i}\right)}{q_{i}\left(Z_{i}\right)}\right]$

(by Jensen's inequality)

$$
\begin{gathered}
=\sum_{j=1}^{k} q_{i}\left(Z_{i}=j\right) \log p_{\theta}\left(X_{i}, Z_{i}=j\right)- \\
\sum_{j=1}^{k} q_{i}\left(Z_{i}=j\right) \log q_{i}\left(Z_{i}=j\right)
\end{gathered}
$$

In summary

$$
\geq \arg \max _{\theta,\left\{q_{i}\right\}} \sum_{i}\left(\sum_{j=1}^{k} q_{i}\left(Z_{i}=j\right) \log p_{\theta}\left(X_{i}, Z_{i}=j\right)-\sum_{j=1}^{k} q_{i}\left(Z_{i}=j\right) \log q_{i}\left(Z_{i}=j\right)\right)
$$

E Step (Expectation Step)

$$
\arg \max _{\theta,\left\{q_{i}\right\}} \sum_{i}\left(\sum_{j=1}^{k} q_{i}\left(Z_{i}=j\right) \log p_{\theta}\left(X_{i}, Z_{i}=j\right)-\sum_{j=1}^{k} q_{i}\left(Z_{i}=j\right) \log q_{i}\left(Z_{i}=j\right)\right)
$$

- E step: fix θ, optimize q_{i} 's (let's focus on a single q_{i} for simplicity)

$$
\begin{gathered}
\arg \max _{q_{i}} \sum_{j=1}^{k} q_{i}\left(Z_{i}=j\right)\left(\log p_{\theta}\left(X_{i}, Z_{i}=j\right)-\log q_{i}\left(Z_{i}=j\right)\right) \\
=\arg \max _{q_{i}} \sum_{j=1}^{k} q_{i}\left(Z_{i}=j\right)\left(\log p_{\theta}\left(Z_{i}=j \mid X_{i}\right)+\log p_{\theta}\left(X_{i}\right)-\log q_{i}\left(Z_{i}=j\right)\right)
\end{gathered}
$$

(Drop constant $\log p_{\theta}\left(X_{i}\right)$)

$$
=\arg \min _{q_{i}} E_{Z_{i} \sim q_{i}}\left[\log \frac{q_{i}\left(Z_{i}\right)}{p_{\theta}\left(Z_{i} \mid X_{i}\right)}\right]
$$

This is the KL Divergence between distributions q_{i} and $p_{\theta}\left(\cdot \mid X_{i}\right)$. It is always nonnegative, and minimized when $q_{i}\left(Z_{i}\right)=p_{\theta}\left(Z_{i} \mid X_{i}\right)$, so choose q_{i} in this way.

M Step (Maximization Step)

$$
\arg \max _{\theta,\left\{q_{i}\right\}} \sum_{i}\left(\sum_{j=1}^{k} q_{i}\left(Z_{i}=j\right) \log p_{\theta}\left(X_{i}, Z_{i}=j\right)-\sum_{j=1}^{k} q_{i}\left(Z_{i}=j\right) \log q_{i}\left(X_{i}, Z_{i}=j\right)\right)
$$

- M step: Fix q_{i} 's, optimize θ

- Often solvable in closed form

The Algorithm

1. Initialize θ parameters
2. Run E step
3. Run M step
4. Repeat 2,3

EM for GMMs

- E step: $q_{i}\left(Z_{i}=j\right)=p_{\theta}\left(Z_{i}=j \mid X_{i}\right)=\frac{p_{\theta}\left(Z_{i}=j, X_{i}\right)}{p_{\theta}\left(X_{i}\right)}=\frac{\pi_{j} N\left(\mu_{j}, \Sigma_{j}, X_{i}\right)}{\sum_{\ell=1}^{k} \pi_{\ell} N\left(\mu_{\ell}, \Sigma_{\ell}, X_{i}\right)}$
- Compute for all X_{i}, for all $j \in\{1, \ldots, k\}$
- M step (for simplicity, 1D, variance $=1 . p_{\theta}(x)=\sum \pi_{j} N\left(\mu_{j}, 1, x\right)$):

$$
\begin{gathered}
\arg \max _{\theta} \sum_{i=1}^{n} \sum_{j=1}^{k} q_{i}\left(Z_{i}=j\right) \log p_{\theta}\left(X_{i}, Z_{i}=j\right) \\
=\arg \max _{\theta} \sum_{i=1}^{n} \sum_{j=1}^{k} q_{i}\left(Z_{i}=j\right) \log \left(\pi_{j} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{\left(X_{i}-\mu_{j}\right)^{2}}{2}\right)\right) \\
=\arg \max _{\theta} \sum_{i=1}^{n} \sum_{j=1}^{k} q_{i}\left(Z_{i}=j\right)\left(\log \pi_{j}-\frac{\left(X_{i}-\mu_{j}\right)^{2}}{2}\right)
\end{gathered}
$$

Focus on optimizing μ_{j}

$$
\arg \max _{\theta} \sum_{i=1}^{n} \sum_{j=1}^{k} q_{i}\left(Z_{i}=j\right)\left(-\frac{\left(X_{i}-\mu_{j}\right)^{2}}{2}\right)
$$

Optimize by taking derivative wrt μ_{j} and setting $=0$

$$
\sum_{i=1}^{n}-q_{i}\left(Z_{i}=j\right)\left(X_{i}-\mu_{j}\right)=0
$$

Rearranging...

$$
\mu_{j}=\frac{\sum_{i} q_{i}\left(Z_{i}=j\right) X_{i}}{\sum_{i} q_{i}\left(Z_{i}=j\right)}
$$

Focus on optimizing π_{j}

$$
\begin{aligned}
& \arg \max _{\theta} \sum_{i=1}^{n} \sum_{j=1}^{k} q_{i}\left(Z_{i}=j\right) \log \pi_{j} \quad\left(\text { s.t. } \sum_{\ell=1}^{k} \pi_{\ell}=1\right) \\
& \arg \max _{\theta} \sum_{i=1}^{n} \sum_{j=1}^{k} q_{i}\left(Z_{i}=j\right) \log \pi_{j}+\lambda\left(\sum_{j=1}^{k} \pi_{j}-1\right)^{\prime}
\end{aligned}
$$

Differentiate wrt π_{j}, set equal to 0

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{q_{i}\left(Z_{i}=j\right)}{\pi_{j}}+\lambda=0 \\
& \pi_{j}=-\frac{1}{\lambda} \sum_{i=1}^{n} q_{i}\left(Z_{i}=j\right)
\end{aligned}
$$

Focus on optimizing π_{j}

$$
\pi_{j}=-\frac{1}{\lambda} \sum_{i=1}^{n} q_{i}\left(Z_{i}=j\right)
$$

But what is λ ? Note

$$
1=\sum_{j=1}^{k} \pi_{j}=-\frac{1}{\lambda} \sum_{i=1}^{n} \sum_{j=1}^{k} q_{i}\left(Z_{i}=j\right)=-\frac{n}{\lambda}
$$

So $\lambda=-n$.
Therefore

$$
\pi_{j}=\frac{1}{n} \sum_{i=1}^{n} q_{i}\left(Z_{i}=j\right)
$$

Example

