Robustness

Gautam Kamath

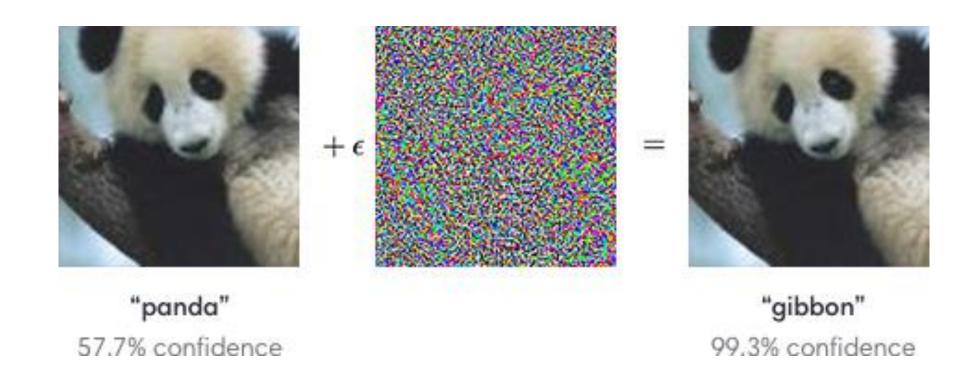
Robustness

- What if the setting deviates from what we assume?
 - E.g., generally assume train and test data generated i.i.d. from a distribution
- Why might this happen?
 - Model misspecification
 - Measurement error
 - Dirty data
 - Adversarial manipulation

Simple example

- Suppose $X_1, ..., X_n \sim N(\mu, 1)$ (Draw)
- Goal: estimate μ from X_1, \dots, X_n
- Easy solution: let $\hat{\mu} = \frac{1}{n} \sum X_i$. If n is large, $\hat{\mu} \approx \mu$.
- But what if there are outliers? Even just one outlier (draw)
 - Example of an *attack*
- If outlier is very large ($\gg 100n + \mu$), then $|\mu \hat{\mu}|$ will be large (> 100)
- How can we defend?
 - Prune outliers
 - Use the median instead of mean (example of a robust statistic)

Today: Adversarial Examples



Adversarial Examples Setting

- Train and test data are obtained (as usual)
- Model is trained on the training data (as usual)
- At test time, each feature vector can be modified a "small amount" (arbitrarily/adversarially)
- x' is an adversarial example for x on model f_{θ} if
- 1. (Informal) $x \approx x' \leftrightarrow \operatorname{dist}(x, x')$ is small $\leftrightarrow x$ and x' have same label according to human
- 2. $f_{\theta}(x) \neq f_{\theta}(x')$

Distance between points

- "x and x' have same label according to human"
- Can ask a human this question, but not clear how to encode human perception...
- Instead, use distances between x and x' as a proxy
- Most common: ℓ_p -distance $\|x x'\|_p = \left(\sum (x_j x_j')^p\right)^{1/p}$
- Given true test point x adversary can replace with point x' in $\{y: \|x-y\|_p \le \varepsilon\}$, where ε is some small number (problem dependent)
- Common: $p = 0, 2, \infty$ (discuss each, today we focus on ∞)
- Other distances: Wasserstein, translation, rotations, resizing (draw)

Attacker: How to create adversarial examples?

- Given trained model f_{θ} , test example x, construct x'
- Need: $||x x'||_{\infty} \le \varepsilon$ and $f_{\theta}(x) \ne f_{\theta}(x')$
- White-box vs black-box?
- Untargeted vs targeted attacks?
 - Targeted attacks: $f_{\theta}(x') = c \neq f_{\theta}(x)$, where c is a target label
- How do we optimize ML models normally? Gradient descent
- $\arg\min_{\theta} \frac{1}{n} \sum \ell(x_i, y_i, \theta)$
- Update steps $\theta \leftarrow \theta \frac{\eta}{n} \sum \nabla_{\theta} \ell(x_i, y_i, \theta)$

Adversarial Example Formulation

- $\delta' = \arg \max_{\delta} \ell(x + \delta, y, \theta)$ s.t. $\|\delta\|_{\infty} \le \varepsilon$, where $\delta \in \mathbf{R}^d$ • $x' = x + \delta'$
- Gradient-based optimization
- Simple: Fast Gradient Sign Method
- To maximize, step in direction $\nabla_{\delta} \ell(x + \delta, y, \theta)$, but note constraint
 - Take biggest step allowed (Draw FGSM, small or large gradient but fit to box)
 - $\varepsilon^* = \varepsilon \cdot \text{sign}(\nabla_{\delta} \ell(x + \delta, y, \theta)) \in \{\pm \varepsilon\}^d$

Better: Projected Gradient Descent (PGD)

- Multi-step version of FGSM
- $\delta^{(t+1)} = \text{Proj}\left(\delta^{(t)} + \eta \cdot \text{sign}(\nabla_{\delta}\ell(x + \delta, y, \theta))\right)$
 - (Draw idea of gradient descent without projection, add projection)
 - η is a hyperparameter
 - Project into $[-\varepsilon, \varepsilon]^d$ if necessary
 - E.g. $Proj([3\varepsilon, -2\varepsilon, 0.5\varepsilon]) = [\varepsilon, -\varepsilon, 0.5\varepsilon]$
 - Technical note: this is actually projected steepest gradient ascent, to deal with issues of gradients being small

Untargeted vs. Targeted

- Untargeted: $\max_{\delta} \ell(x + \delta, y, \theta)$ s.t. $\|\delta\|_{\infty} \le \varepsilon$
- Targeted to $c: \max_{\delta} \ell(x + \delta, y, \theta) \ell(x + \delta, c, \theta)$ s.t. $\|\delta\|_{\infty} \le \varepsilon$

Defenses? Adversarial Training

- Usual goal: $\min_{\theta} E_{(x,y)\sim p}[\ell(x,y,\theta)]$
- Robust setting: $\min_{\theta} E_{(x,y)\sim p} \left[\max_{\delta: \|\delta\|_{\infty} \leq \varepsilon} \ell(x+\delta, y, \theta) \right]$
 - Train a network to anticipate attacks
 - To be a good defender have to be a good attacker
 - On an actual dataset, $\min_{\theta} \frac{1}{n} \sum \max_{\delta_i: \|\delta_i\|_{\infty} \le \varepsilon} \ell(x_i + \delta_i, y_i, \theta)$
- 1. Draw a minibatch *B*
- 2. For each (x_i, y_i) in B, compute $\delta_i^* = \arg\max_{\delta_i: \|\delta_i\|_{\infty} \le \varepsilon} \ell(x_i + \delta_i, y_i, \theta)$
- 3. $\theta \leftarrow \theta \frac{\eta}{|B|} \sum_{i \in B} \nabla_{\theta} \ell(x_i + \delta_i^*, y_i, \theta)$
- 4. Repeat

Attacks are more effective than defenses

 Broke 7/9 defenses submitted to ICLR 2018 the day after they were accepted

Defense	Dataset	Distance	Accuracy
Buckman et al. (2018) Ma et al. (2018)	CIFAR CIFAR	$0.031 (\ell_{\infty}) \\ 0.031 (\ell_{\infty})$	$0\%* \\ 5\%$
Guo et al. (2018) Dhillon et al. (2018)	ImageNet CIFAR	$0.005 (\ell_2) \\ 0.031 (\ell_{\infty})$	$0\%* \\ 0\%$
Xie et al. (2018) Song et al. (2018)	ImageNet CIFAR	$0.031 (\ell_{\infty}) \\ 0.031 (\ell_{\infty})$	$0\%* \\ 9\%*$
Samangouei et al. (2018)	MNIST	$0.005 \left(\ell_2\right)$	55%**
Madry et al. (2018) Na et al. (2018)	CIFAR CIFAR	$0.031 (\ell_{\infty}) \\ 0.015 (\ell_{\infty})$	47% 15%

Backdoor attacks

Modify training and test data

