Linear Regression

Gautam Kamath

Calculus Review: Derivatives and Gradients

- Derivative
- Let $f(x): \mathbf{R} \rightarrow \mathbf{R}$ be a scalar-valued function of one variable
- Derivative $f^{\prime}(x)=\frac{\mathrm{d} f}{\mathrm{~d} x}: \mathbf{R} \rightarrow \mathbf{R}$
- Example: if $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$
- Gradient
- Let $f(v): \mathbf{R}^{d} \rightarrow \mathbf{R}$ be a scalar-valued function of d variables
- Gradient $\nabla f(v)=\left(\frac{\partial f}{\partial v_{1}}, \ldots, \frac{\partial f}{\partial v_{d}}\right): \mathbf{R}^{d} \rightarrow \mathbf{R}^{d}$
- Example: if $f(v)=v_{1} v_{2}^{2}+v_{3}^{3}$, then $\nabla f(v)=\left(v_{2}^{2}, 2 v_{1} v_{2}, 3 v_{3}^{2}\right)$
- Most important mathematical object in this course (?)!

A bit more Calculus: Hessian

- Hessian
- Let $f(v): \mathbf{R}^{d} \rightarrow \mathbf{R}$ be a scalar-valued function of d variables
- Hessian $\nabla^{2} f(v): \mathbf{R}^{d} \rightarrow \mathbf{R}^{d \times d}$

$$
\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial v_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial v_{1} \partial v_{d}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial v_{1} \partial v_{d}} & \cdots & \frac{\partial^{2} f}{\partial v_{d}^{2}}
\end{array}\right]
$$

Statistical Learning (more general than before)

- Setup: Given $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \sim_{i . i . d .} P$
- This time: feature vector $x_{i} \in \mathbf{R}^{d}$, but label $y_{i} \in \mathbf{R}$ (as opposed to ± 1 before)
- Problem defined by a loss function $\ell_{w}(x, y)$
- Sometimes written as $\ell(w, x, y)$. w is the parameter vector.
- Goal: output $\arg \min _{w} \mathbf{E}_{(x, y) \sim P}\left[\ell_{w}(x, y)\right]$
- Parameter vector w which minimizes loss given new point from distribution
- Generalization of previous lecture's goal
- $\ell_{w}(x, y)=0$ if $\operatorname{sign}(\langle w, x\rangle)=y, \ell_{w}(x, y)=1$ if $\operatorname{sign}(\langle w, x\rangle) \neq y$
- Goal: output $\arg \min _{\mathrm{w}} \mathbf{E}_{(x, y) \sim P}\left[\ell_{w}(x, y)\right]=\arg \min _{\mathrm{w}} \operatorname{Pr}_{(x, y) \sim P}[\operatorname{sign}(\langle w, x\rangle) \neq y]$

Empirical Risk Minimization (ERM)

- Goal: output $\arg \min _{w} \mathbf{E}_{(x, y) \sim P}\left[\ell_{w}(x, y)\right]$
- But we don't know the distribution P - we only have $\left(x_{i}, y_{i}\right.$)'s from P
- What do we do?
- Minimize the expected loss over the training dataset
- i.e., the empirical distribution
- Output

$$
\arg \min _{w} \frac{1}{n} \sum_{i=1}^{n} \ell_{w}\left(x_{i}, y_{i}\right)
$$

- Converges to desired quantity as $n \rightarrow \infty$
- Goal is to find w which minimizes some function

Convexity and Optimization

- How do we pick a good loss function?
- Depends on structure we assume in data, consider e.g., perceptron
- Also may depend on convenience, especially for optimization
- (Draw picture of convex function)
- Function f is convex iff for all $\lambda \in[0,1], x_{1}, x_{2}$,

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

- Alternatively: $f^{\prime \prime}(x) \geq 0$ (1D functions) or $\nabla^{2} f(x) \succcurlyeq 0$
- Matrix $M \in \mathbf{R}^{d \times d}$ is positive semidefinite (PSD) iff $v^{T} M v \geq 0$ for all vectors $v \in \mathbf{R}^{d}$
- Also written $M \succcurlyeq 0$
- (Draw non-convex function, local, global min, saddle point)

Convexity

- Convexity is nice because it makes optimization easier
- Fermat's condition: If x is a local extremum of a function f, then $\nabla f(x)=\overrightarrow{0}$. Additionally, if f is convex, then the converse is true:
$\nabla f(x)=\overrightarrow{0}$ implies that x is a local extremum.
- Tying back to ERM: goal is to find $\arg \min _{w} \frac{1}{n} \sum_{i=1}^{n} \ell_{w}\left(x_{i}, y_{i}\right)$
- If ℓ_{w} is convex ($\operatorname{in}_{n} w$), then ERM is equivalent to finding w^{*} such that

$$
\nabla_{w} \frac{1}{n} \sum_{i=1}^{n} \ell_{w^{*}}\left(x_{i}, y_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \nabla_{w} \ell_{w^{*}}\left(x_{i}, y_{i}\right)=\overrightarrow{0}
$$

Linear Regression

- (Draw tipping example on board)
- Loss function $\ell_{w}(x, y)=(y-\langle w, x\rangle)^{2}$
- Pays the square of the residual (draw on board)
- Resulting predictor is $y=\langle w, x\rangle$
- Use padding trick to allow line to not go through origin
- Replace x by $[x, 1]$ and w by $[w, b]$
- Could imagine more complicated scenarios, e.g., polynomial regression (draw on board)
- But not today

Looking closer at the loss function

- Loss function: $\sum\left(y_{i}-\left\langle w, x_{i}\right\rangle\right)^{2}$
- Let $A \in \mathbf{R}^{n \times d}$ and $z \in \mathbf{R}^{n}$ be the feature vectors and labels stacked
- (draw on board)
- Then loss function is equivalently $\|A w-z\|_{2}^{2}$
- First entry of $A w-z$ is $\left\langle x_{1}, w\right\rangle-y_{1}$, square and sum (draw on board)

The loss function is convex

-Loss fn $\|A w-z\|_{2}^{2}=(A w-z)^{T}(A w-z)=\left(w^{T} A^{T}-z^{T}\right)(A w-z)$
$=w^{T} A^{T} A w-z^{T} A w-w^{T} A^{T} z+z^{T} z$
$=w^{T} A^{T} A w-2 w^{T} A^{T} z+z^{T} z$

- Claim: if $f(x)=x^{T} A x+x^{T} b+c$, then $\nabla f(x)=\left(A+A^{T}\right) x+b$
- Thus $\nabla_{w}\|A w-z\|_{2}^{2}=2 A^{T} A w-2 A^{T} z$
- Checking the Hessian, $\nabla_{w}^{2}\|A w-z\|_{2}^{2}=2 A^{T} A \succcurlyeq 0$
- Why? Since $2 v^{T} A^{T} A v=2\|A v\|_{2}^{2} \geq 0$ for any vector v
- Therefore the loss function is convex

Optimizing Least Squares

- So what if the loss function is convex?
- Setting the gradient to 0 minimizes the function
- Set $\nabla_{w}\|A w-z\|_{2}^{2}=2 A^{T} A w-2 A^{T} z$ to be 0
- That is, find \widehat{w} such that $A^{T} A \widehat{w}=A^{T} Z$
- Could solve for \widehat{W} by computing $\widehat{w}=\left(A^{T} A\right)^{-1} A^{T} Z$
- ...but requires $A^{T} A$ to be invertible
- ...and could be slow, or imprecise if ill-conditioned
- Better to just solve the linear system $A^{T} A \widehat{w}=A^{T} Z$ for unknown \widehat{w}

Where did squared loss come from? An MLE perspective

- Gaussian distribution $N\left(\mu, \sigma^{2}\right)$ (draw picture)
- $f(x)=\frac{1}{\sqrt{2 \pi \sigma}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$
- Maximum Likelihood principle: find model parameters which maximize the probability of the observed data
- $\arg \max _{\text {model parameters }} \operatorname{Pr}$ [observed data |model parameters]
- Needs some generative assumption on observed data wrt model parameters
- i.e., $(x, y) \sim P_{w}$, where w are the model parameters
- A common assumption: $y=\langle w, x\rangle+z$, where $z \sim N\left(0, \sigma^{2}\right)$

Deriving the MLE

$$
\begin{aligned}
& y=\langle w, x\rangle+z, \text { where } z \sim N\left(0, \sigma^{2}\right) \\
& \widehat{w}=\arg \max _{w} \operatorname{Pr}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \mid w\right] \\
& =\arg \max _{w} \prod_{i} \operatorname{Pr}\left[\left(x_{i}, y_{i}\right) \mid w\right] \\
& =\arg \max _{w} \prod_{i} \operatorname{Pr}\left[y_{i} \mid x_{i}, w\right] \operatorname{Pr}\left[x_{i} \mid w\right] \\
& =\arg \max _{w} \prod \operatorname{Pr}\left[y_{i} \mid x_{i}, w\right] \\
& =\arg \max _{w} \prod_{i}^{i} \operatorname{Pr}\left[y_{i} \mid x_{i}, w\right] \\
& =\arg \max _{w} \log \left(\prod_{i} \operatorname{Pr}\left[y_{i} \mid x_{i}, w\right]\right)
\end{aligned}
$$

$$
\begin{gathered}
=\arg \max _{w} \sum_{i} \log \left(\operatorname{Pr}\left[y_{i} \mid x_{i}, w\right]\right) \\
\left(\text { Note: } y_{i} \mid x_{i}, w \sim N\left(\langle w, x\rangle, \sigma^{2}\right)\right) \\
=\arg \max _{w} \sum_{\arg }^{\arg \max _{w} \sum_{i}\left(\frac{1}{\sqrt{2 \pi \sigma}} \operatorname{eog}\left(\frac{1}{\sqrt{2 \pi \sigma}}\right)+\exp \left(-\frac{(y-\langle w, x\rangle)^{2}}{2 \sigma^{2}}\right)\right)} \\
=\arg \max _{w} \sum_{i}-\frac{(y-\langle w, x\rangle)^{2}}{2 \sigma^{2}} \\
=\arg \min _{w} \sum_{i}(y-\langle w, x\rangle)^{2}
\end{gathered}
$$

Loss function is the squared error!

Regularization

- (Draw regression picture, with polynomial vs linear fit)
- Choosing the right model is important!
- Sometimes simpler models are better
- E.g., a more complex model which gets 0 training error may be worse than a simpler model which gets larger training model
- Tikhonov regularization or Ridge regression
- $\arg \min _{w}\|A w-z\|_{2}^{2}+\lambda\|w\|_{2}^{2}$
- Lasso
- $\arg \min _{w}\|A w-z\|_{2}^{2}+\lambda\|w\|_{1}$
- Prefers sparse solutions

Hyperparameter selection

- Types of datasets
- Training, validation, test
- Use validation to make sure you didn't overfit to training data
- Can try different hyperparameters using validation - but not too many/adaptively or you'll overfit to training + validation
- E.g., commit to $\lambda=\{0.01,0.1,0.5,1\}$, train all models on training data, choose the best one via the validation set
- What if we have no validation set?

Cross Validation

- Split training data into k sets (draw on board), e.g. $k=10$ is common For each λ :

$$
\text { For } i=1 \text { to } k \text { : }
$$

$w_{\lambda, i}=$ train on all data but split i with hyperparameter λ $\operatorname{perf}_{\lambda, i}=$ performance of $w_{\lambda, i}$ on the split i

$$
\operatorname{perf}_{\lambda}=\sum_{i} \operatorname{perf}_{\lambda, i}
$$

Return λ which has the biggest perf ${ }_{\lambda}$

- Note: often turn regularization "off" for validation/test
- $\|A w-z\|_{2}^{2}+\lambda\|w\|_{2}^{2}$ when training, but $\|A w-z\|_{2}^{2}$ on validation

