
Linear Regression
Gautam Kamath

Calculus Review: Derivatives and Gradients

• Derivative
• Let 𝑓 𝑥 ∶ 𝐑 → 𝐑 be a scalar-valued function of one variable

• Derivative 𝑓′ 𝑥 =
d𝑓

d𝑥
∶ 𝐑 → 𝐑

• Example: if 𝑓 𝑥 = 𝑥2, then 𝑓′ 𝑥 = 2𝑥

• Gradient
• Let 𝑓 𝑣 ∶ 𝐑𝑑 → 𝐑 be a scalar-valued function of 𝑑 variables

• Gradient ∇𝑓 𝑣 =
𝜕𝑓

𝜕𝑣1
, … ,

𝜕𝑓

𝜕𝑣𝑑
∶ 𝐑𝑑 → 𝐑𝑑

• Example: if 𝑓 𝑣 = 𝑣1𝑣2
2 + 𝑣3

3, then ∇𝑓 𝑣 = (𝑣2
2, 2𝑣1𝑣2, 3𝑣3

2)

• Most important mathematical object in this course (?)!

A bit more Calculus: Hessian

• Hessian
• Let 𝑓 𝑣 ∶ 𝐑𝑑 → 𝐑 be a scalar-valued function of 𝑑 variables

• Hessian ∇2𝑓 𝑣 ∶ 𝐑𝑑 → 𝐑𝑑×𝑑

𝜕2𝑓

𝜕𝑣1
2 ⋯

𝜕2𝑓

𝜕𝑣1𝜕𝑣𝑑
⋮ ⋱ ⋮

𝜕2𝑓

𝜕𝑣1𝜕𝑣𝑑
⋯

𝜕2𝑓

𝜕𝑣𝑑
2

Statistical Learning (more general than before)

• Setup: Given 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 ∼𝑖.𝑖.𝑑. 𝑃
• This time: feature vector 𝑥𝑖 ∈ 𝐑𝑑, but label 𝑦𝑖 ∈ 𝐑 (as opposed to ±1 before)

• Problem defined by a loss function ℓ𝑤 𝑥, 𝑦
• Sometimes written as ℓ(𝑤, 𝑥, 𝑦). 𝑤 is the parameter vector.

• Goal: output argmin
𝑤

𝐄 𝑥,𝑦 ∼𝑃[ℓ𝑤(𝑥, 𝑦)]

• Parameter vector 𝑤 which minimizes loss given new point from distribution

• Generalization of previous lecture’s goal
• ℓ𝑤 𝑥, 𝑦 = 0 if sign 𝑤, 𝑥 = 𝑦, ℓ𝑤 𝑥, 𝑦 = 1 if sign 𝑤, 𝑥 ≠ 𝑦

• Goal: output argmin
w

𝐄 𝑥,𝑦 ∼𝑃[ℓ𝑤(𝑥, 𝑦)] = argmin
w

Pr 𝑥,𝑦 ∼𝑃[sign 𝑤, 𝑥 ≠ 𝑦]

Empirical Risk Minimization (ERM)

• Goal: output argmin
𝑤

𝐄 𝑥,𝑦 ∼𝑃[ℓ𝑤(𝑥, 𝑦)]

• But we don’t know the distribution 𝑃 – we only have 𝑥𝑖 , 𝑦𝑖 ’s from 𝑃

• What do we do?

• Minimize the expected loss over the training dataset
• i.e., the empirical distribution

• Output

argmin
𝑤

1

𝑛
෍

𝑖=1

𝑛

ℓ𝑤(𝑥𝑖 , 𝑦𝑖)

• Converges to desired quantity as 𝑛 → ∞

• Goal is to find 𝑤 which minimizes some function

Convexity and Optimization

• How do we pick a good loss function?
• Depends on structure we assume in data, consider e.g., perceptron

• Also may depend on convenience, especially for optimization

• (Draw picture of convex function)

• Function 𝑓 is convex iff for all 𝜆 ∈ 0,1 , 𝑥1, 𝑥2,

𝑓 𝜆𝑥1 + 1 − 𝜆 𝑥2 ≤ 𝜆𝑓 𝑥1 + 1 − 𝜆 𝑓(𝑥2)

• Alternatively: 𝑓′′ 𝑥 ≥ 0 (1D functions) or ∇2𝑓 𝑥 ≽ 0
• Matrix 𝑀 ∈ 𝐑𝑑×𝑑 is positive semidefinite (PSD) iff 𝑣𝑇𝑀𝑣 ≥ 0 for all vectors 𝑣 ∈ 𝐑𝑑

• Also written 𝑀 ≽ 0

• (Draw non-convex function, local, global min, saddle point)

Convexity

• Convexity is nice because it makes optimization easier

• Fermat’s condition: If 𝑥 is a local extremum of a function 𝑓, then
∇𝑓 𝑥 = 0. Additionally, if 𝑓 is convex, then the converse is true:
∇𝑓 𝑥 = 0 implies that 𝑥 is a local extremum.

• Tying back to ERM: goal is to find argmin
𝑤

1

𝑛
σ𝑖=1
𝑛 ℓ𝑤(𝑥𝑖 , 𝑦𝑖)

• If ℓ𝑤 is convex (in 𝑤), then ERM is equivalent to finding 𝑤∗ such that

∇𝑤
1

𝑛
෍

𝑖=1

𝑛

ℓ𝑤∗(𝑥𝑖 , 𝑦𝑖) =
1

𝑛
෍

𝑖=1

𝑛

∇𝑤ℓ𝑤∗(𝑥𝑖 , 𝑦𝑖) = 0

Linear Regression

• (Draw tipping example on board)

• Loss function ℓ𝑤 𝑥, 𝑦 = 𝑦 − 𝑤, 𝑥 2

• Pays the square of the residual (draw on board)

• Resulting predictor is 𝑦 = ⟨𝑤, 𝑥⟩

• Use padding trick to allow line to not go through origin
• Replace 𝑥 by [𝑥, 1] and 𝑤 by [𝑤, 𝑏]

• Could imagine more complicated scenarios, e.g., polynomial
regression (draw on board)
• But not today

Looking closer at the loss function

• Loss function: σ 𝑦𝑖 − 𝑤, 𝑥𝑖
2

• Let 𝐴 ∈ 𝐑𝑛×𝑑 and 𝑧 ∈ 𝐑𝑛 be the feature vectors and labels stacked
• (draw on board)

• Then loss function is equivalently 𝐴𝑤 − 𝑧 2
2

• First entry of 𝐴𝑤 − 𝑧 is 𝑥1, 𝑤 − 𝑦1, square and sum (draw on board)

The loss function is convex

• Loss fn 𝐴𝑤 − 𝑧 2
2 = 𝐴𝑤 − 𝑧 𝑇 𝐴𝑤 − 𝑧 = 𝑤𝑇𝐴𝑇 − 𝑧𝑇 𝐴𝑤 − 𝑧

= 𝑤𝑇𝐴𝑇𝐴𝑤 − 𝑧𝑇𝐴𝑤 − 𝑤𝑇𝐴𝑇𝑧 + 𝑧𝑇𝑧
= 𝑤𝑇𝐴𝑇𝐴𝑤 − 2𝑤𝑇𝐴𝑇𝑧 + 𝑧𝑇𝑧

• Claim: if 𝑓 𝑥 = 𝑥𝑇𝐴𝑥 + 𝑥𝑇𝑏 + 𝑐, then ∇𝑓 𝑥 = 𝐴 + 𝐴𝑇 𝑥 + 𝑏

• Thus ∇𝑤 𝐴𝑤 − 𝑧 2
2 = 2𝐴𝑇𝐴𝑤 − 2𝐴𝑇𝑧

• Checking the Hessian, ∇𝑤
2 𝐴𝑤 − 𝑧 2

2 = 2𝐴𝑇𝐴 ≽ 0
• Why? Since 2𝑣𝑇𝐴𝑇𝐴𝑣 = 2 𝐴𝑣 2

2 ≥ 0 for any vector 𝑣

• Therefore the loss function is convex

Optimizing Least Squares

• So what if the loss function is convex?

• Setting the gradient to 0 minimizes the function

• Set ∇𝑤 𝐴𝑤 − 𝑧 2
2 = 2𝐴𝑇𝐴𝑤 − 2𝐴𝑇𝑧 to be 0

• That is, find ෝ𝑤 such that 𝐴𝑇𝐴ෝ𝑤 = 𝐴𝑇𝑧

• Could solve for ෝ𝑤 by computing ෝ𝑤 = 𝐴𝑇𝐴 −1𝐴𝑇𝑧
• …but requires 𝐴𝑇𝐴 to be invertible

• …and could be slow, or imprecise if ill-conditioned

• Better to just solve the linear system 𝐴𝑇𝐴ෝ𝑤 = 𝐴𝑇𝑧 for unknown ෝ𝑤

Where did squared loss come from?
An MLE perspective
• Gaussian distribution 𝑁 𝜇, 𝜎2 (draw picture)

• 𝑓 𝑥 =
1

2𝜋𝜎
exp −

𝑥−𝜇 2

2𝜎2

• Maximum Likelihood principle: find model parameters which
maximize the probability of the observed data

• arg max
model parameters

Pr observed data model parameters]

• Needs some generative assumption on observed data wrt model
parameters
• i.e., 𝑥, 𝑦 ∼ 𝑃𝑤, where 𝑤 are the model parameters

• A common assumption: 𝑦 = 𝑤, 𝑥 + 𝑧, where 𝑧 ∼ 𝑁 0, 𝜎2

Deriving the MLE

𝑦 = 𝑤, 𝑥 + 𝑧, where 𝑧 ∼ 𝑁 0, 𝜎2

ෝ𝑤 = argmax
𝑤

Pr 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 |𝑤

= argmax
𝑤

ෑ

𝑖

Pr 𝑥𝑖, 𝑦𝑖 |𝑤

= argmax
𝑤

ෑ

𝑖

Pr 𝑦𝑖|𝑥𝑖 , 𝑤 Pr 𝑥𝑖|𝑤

= argmax
𝑤

ෑ

𝑖

Pr 𝑦𝑖|𝑥𝑖 , 𝑤

= argmax
𝑤

ෑ

𝑖

Pr 𝑦𝑖|𝑥𝑖 , 𝑤

= argmax
𝑤

log ෑ

𝑖

Pr 𝑦𝑖|𝑥𝑖, 𝑤

= argmax
𝑤

෍

𝑖

log Pr 𝑦𝑖|𝑥𝑖 , 𝑤

(Note: 𝑦𝑖|𝑥𝑖 , 𝑤 ∼ 𝑁 𝑤, 𝑥 , 𝜎2)

= argmax
𝑤

෍log
1

2𝜋𝜎
exp −

𝑦 − ⟨𝑤, 𝑥⟩ 2

2𝜎2

= argmax
𝑤

෍

𝑖

log
1

2𝜋𝜎
+ log exp −

𝑦 − ⟨𝑤, 𝑥⟩ 2

2𝜎2

= argmax
𝑤

෍

𝑖

−
𝑦 − ⟨𝑤, 𝑥⟩ 2

2𝜎2

= argmin
𝑤

෍

𝑖

𝑦 − ⟨𝑤, 𝑥⟩ 2

Loss function is the squared error!

Regularization

• (Draw regression picture, with polynomial vs linear fit)

• Choosing the right model is important!
• Sometimes simpler models are better
• E.g., a more complex model which gets 0 training error may be worse than a

simpler model which gets larger training model

• Tikhonov regularization or Ridge regression
• argmin

𝑤
𝐴𝑤 − 𝑧 2

2 + 𝜆 𝑤 2
2

• Lasso
• argmin

𝑤
𝐴𝑤 − 𝑧 2

2 + 𝜆 𝑤 1

• Prefers sparse solutions

Hyperparameter selection

• Types of datasets
• Training, validation, test

• Use validation to make sure you didn’t overfit to training data

• Can try different hyperparameters using validation – but not too
many/adaptively or you’ll overfit to training + validation
• E.g., commit to 𝜆 = {0.01, 0.1, 0.5, 1}, train all models on training data,

choose the best one via the validation set

• What if we have no validation set?

Cross Validation

• Split training data into 𝑘 sets (draw on board), e.g. 𝑘 = 10 is common

For each 𝜆:

For 𝑖 = 1 to 𝑘:

𝑤𝜆,𝑖 = train on all data but split 𝑖 with hyperparameter 𝜆

perf𝜆,𝑖 = performance of 𝑤𝜆,𝑖 on the split 𝑖

perf𝜆 = σ𝑖 perf𝜆,𝑖

Return 𝜆 which has the biggest perf𝜆
• Note: often turn regularization “off” for validation/test

• 𝐴𝑤 − 𝑧 2
2 + 𝜆 𝑤 2

2 when training, but 𝐴𝑤 − 𝑧 2
2 on validation

