Linear Regression

Gautam Kamath

Calculus Review: Derivatives and Gradients

* Derivative
* Let f(x) : R = R be a scalar-valued function of one variable
* Derivative f'(x) = j—fC :R—->R
e Example: if f(x) = x?, then f'(x) = 2x

* Gradient

* Let f(v) : R? > R be a scalar-valued function of d variables
 Gradient Vf(v) = (a—f a—f) : R4 - R4

ov,’ T ovy
* Example: if f(v) = v,v% + v3, then Vf (v) = (v3, 2v,v,, 3v%)
* Most important mathematical object in this course (?)!

A bit more Calculus: Hessian

e Hessian

e Let f(v) : R? > R be a scalar-valued function of d variables
e Hessian V2f(v) : R - R%*d

- o2f 22f -
0v{ 0v,0v4
02f 02f

0v,0v,4 v

Statistical Learning (more general than before)

* Setup: Given (xXq, Y1), ., (X, Yn) ~iia. P
* This time: feature vector x; € R%, but label y; € R (as opposed to +1 before)

* Problem defined by a loss function £, (x,y)
* Sometimes written as £(w, x,y). w is the parameter vector.

* Goal: output argminE(,. ,y p[£,, (X, ¥)]
w
* Parameter vector w which minimizes loss given new point from distribution

* Generalization of previous lecture’s goal
e £,(x,y) =0ifsign({w,x)) =y, ,(x,y) = 1if sign({w, x)) #y
* Goal: output argmin E(, ;) p[#,,(x,y)] = argmin Pr, ,y_p[sign({w, x)) # y]
W W

Empirical Risk Minimization (ERM)

* Goal: output argmin E¢, y.p[£y, (X,)]
w

* But we don’t know the distribution P — we only have (x;, y;)’s from P
* What do we do?

* Minimize the expected loss over the training dataset
* i.e., the empirical distribution

* Output 1 .
arg min — E Ly, (X, V;)

WL

1=

e Converges to desired quantity asn — oo
e Goal is to find w which minimizes some function

Convexity and Optimization

* How do we pick a good loss function?
* Depends on structure we assume in data, consider e.g., perceptron
* Also may depend on convenience, especially for optimization

 (Draw picture of convex function)
* Function f is convex iff for all A € [0,1], x4, x>,

fAxg + (1 =Dxz) < Af (x1) + (1 = Df(x2)

e Alternatively: f"'(x) = 0 (1D functions) or V2 f(x) = 0
e Matrix M € R¥*4 js positive semidefinite (PSD) iff v Mv > 0 for all vectors v € R?
e Alsowritten M =0

* (Draw non-convex function, local, global min, saddle point)

Convexity

* Convexity is nice because it makes optimization easier

* Fermat’s condition: If x is a local extremum of a function f, then
Vf(x) = 0. Additionally, if f is convex, then the converse is true:
Vf(x) = 0 implies that x is a local extremum.

* Tying back to ERM: goal is to find arg minlz’?= w(Xi, Vi)

o If £,, is convex (|n w), then ERM is equwalent to finding w™ such that

Zf Xy = zv Lu (21, 91) = 0

Linear Regression

* (Draw tipping example on board)
e Loss function €,,(x,y) = (y — {w, x))?

* Pays the square of the residual (draw on board)

* Resulting predictor is y = (w, x)

* Use padding trick to allow line to not go through origin
* Replace x by [x, 1] and w by [w, b]

* Could imagine more complicated scenarios, e.g., polynomial
regression (draw on board)

e But not today

Looking closer at the loss function

e Loss function: Y.(y; — (w, x;))?

e Let A € R4 gnd z € R™ be the feature vectors and labels stacked
e (draw on board)

* Then loss function is equivalently ||[Aw — z||5
* First entry of Aw — zis (x{, w) — y;, square and sum (draw on board)

The loss function is convex

e Loss fn ||Aw — z||5 = (Aw — 2)T(Aw — 2) = wWTAT — zT)(Aw — 2)
=wlATAw — zTAw —wlATz + 277

=wlATAw — 2wTATz + 2" 2

e Claim:if f(x) = xTAx +x"b+c,thenVf(x) = (A +AN)x+ b

e Thus V,, |[Aw — z||5 = 2ATAw — 247z

* Checking the Hessian, V3, ||Aw — z||5 = 24TA > 0
« Why? Since 2vTAT Av = 2||Av||5 = 0 for any vector v

* Therefore the loss function is convex

Optimizing Least Squares

* So what if the loss function is convex?

* Setting the gradient to 0 minimizes the function
e SetV,,||Aw — z||5 = 2ATAw — 24Tz to be O

* That is, find W such that ATAw = A’z

* Could solve for W by computing w = (ATA) 1Az
« ...but requires AT A to be invertible
e ...and could be slow, or imprecise if ill-conditioned

* Better to just solve the linear system AT Aw = A” z for unknown W

Where did squared loss come from?
An MLE perspective

* Gaussian distribution N (u, %) (draw picture)
1 (x—p)?
* fl) = \/ﬁexp(— 2072)
 Maximum Likelihood principle: find model parameters which
maximize the probability of the observed data

e arg max Pr[observed data |model parameters]
model parameters

* Needs some generative assumption on observed data wrt model
parameters

* i.e., (x,y) ~ P,, where w are the model parameters

e A common assumption: y = (w, x) + z, where z ~ N(0, 5?%)

Deriving the MLE

y = {w,x) + z, where z ~ N(0,c?) B |
w = argmax Pr{(xy, y1), ..., (6,) W] = arg mﬁxz og(Prly;|x;, w])
w i
= arg maxl_[Pr((x;, y;)|w] (Note: y;|x;, w ~ N({w, x),0%))
YR Zl 1 ((y — W,x))2>>
= argmax) log exp | —
= argmax | [Prly;lx, wl Prix(w] N e
. y —(w, x
‘ = arg maxz log < > + log (exp (—))
=argmax | | Prly;|x; w] W V2no) 202
w 11 (y - (Wl x>)
L = arg maxz — 252
= argmax | | Pr[y;|x;, w] v o
w 1 1

= argmin Z(y — (w,x))?

= arg maxlo HPr Ao, w
5 w g< ; il]> Loss function is the squared error!

Regularization

 (Draw regression picture, with polynomial vs linear fit)

* Choosing the right model is important!
* Sometimes simpler models are better

* E.g., a more complex model which gets 0 training error may be worse than a
simpler model which gets larger training model

* Tikhonov regularization or Ridge regression
e arg min||Aw — z||5 + A||lw]|5
w
* Lasso
e arg min||Aw — z||5 + A|lw]l,
w

* Prefers sparse solutions

Hyperparameter selection

* Types of datasets
* Training, validation, test

e Use validation to make sure you didn’t overfit to training data

e Can try different hyperparameters using validation — but not too
many/adaptively or you’ll overfit to training + validation

* E.g., committo A = {0.01, 0.1, 0.5, 1}, train all models on training data,
choose the best one via the validation set

e What if we have no validation set?

Cross Validation

* Split training data into k sets (draw on board), e.g. k = 10 is common
For each A:
Fori =1 to k:
wy ; = train on all data but split i with hyperparameter A
perf, ; = performance of wy ; on the split i
perfy =); perfy;
Return A which has the biggest pertf;

* Note: often turn regularization “off” for validation/test
e ||[Aw — z||5 + A||w||5 when training, but ||Aw — z]|5 on validation

