k-Nearest Neighbour

Gautam Kamath

Bayes Classifier

- Recall: goal in classification is to solve $\min_f \Pr_{x,y\sim D}[f(x) \neq y]$
 - Comment: we previously talked about *loss functions*, not this classification error. Classification error is harder to optimize, so we use loss fns as a proxy
- Bayes optimal classifier: $f^*(x) = \arg \max_c \Pr_{y \sim D_Y|X=x}[y = c|x]$
 - Given a point x, look at the distribution of labels given that feature vector
 - Pick whichever label is most likely to be generated
 - Caveat: requires knowing the data distribution *D*, in general impossible
- No classifier can ever do better
- (Draw examples: where labeled 1 for x ∈ S 0 otherwise, with linear classifier and probabilities go up farther, truly random)
- Error of Bayes optimal classifier: $E_{x \sim D_X} \left[1 \max_{c} \Pr_{y \sim D_Y | X = x} [y = c | x] \right]$

k-Nearest Neighbours

 Implicit assumption: if feature vectors x and x' are close, then labels y and y' are likely to be the same

•
$$\Pr_{y \sim D_{Y|X=x}}[y = c|x] \approx \Pr_{y' \sim D_{Y|X=x'}}[y' = c|x'] \text{ when } x \text{ and } x' \text{ are close}$$

Algorithm: kNN

Input: Dataset $\mathcal{D} = l(\mathbf{x}_i, \mathbf{y}_i) \in X \times Y : i = 1, ..., n \beta$, new instance $\mathbf{x} \in X$, hyperparameter kOutput: $\mathbf{y} = \mathbf{y}(\mathbf{x})$ 1 for i = 1, 2, ..., n do 2 $\lfloor d_i \leftarrow \operatorname{dist}(\mathbf{x}, \mathbf{x}_i)$ // avoid for-loop if possible 3 find indices $i_1, ..., i_k$ of the k smallest entries in d 4 $\mathbf{y} \leftarrow \operatorname{aggregate}(\mathbf{y}_{i_1}, ..., \mathbf{y}_{i_k})$

- Dist and aggregate underspecified: often ℓ_2 and majority vote
- (Draw an example, say k = 5)

Comments on kNN

- Non-parametric
 - Can't be succinctly described by a parameter vector
- Distances
 - (Draw ℓ_2 ball versus ℓ_1 and ℓ_∞ ball)

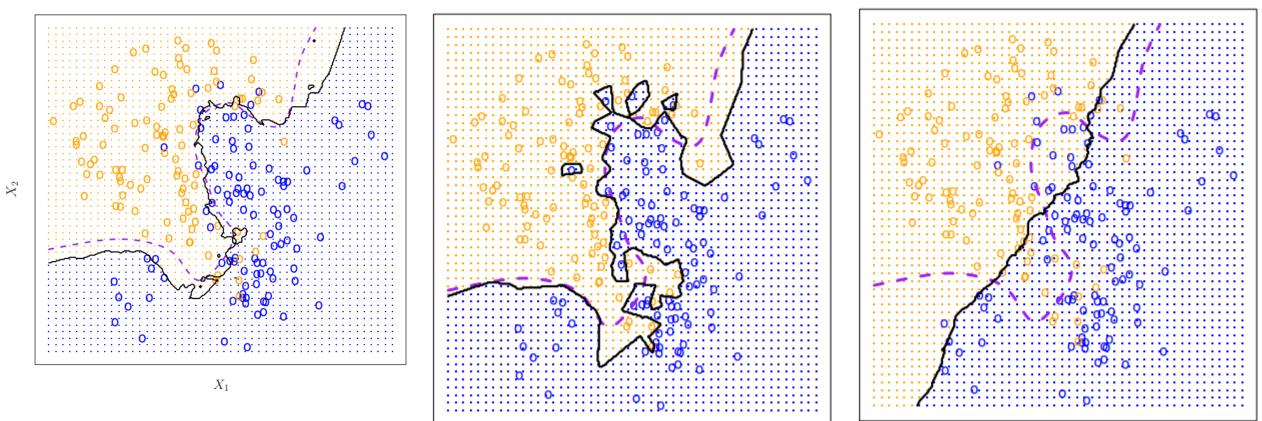
Time and Space Complexity

- Training takes 0 time (just store dataset), but O(nd) space
 - Compare space with perceptron, lin reg, which only need O(d) space
- Classification of new point takes O(ndk) time naively, O(nd) space
 - Time can be reduced to O(nd) time a bit more carefully
- Can do better in some cases
 - E.g., Voronoi diagram for 1-NN
 - Takes $O(d \log n)$ time, $n^{O(d)}$ space
 - Good in low-dimensional settings
 - Approximate nearest neighbours

The role of *k*

• (Revisit previous k = 5 with larger and smaller values)

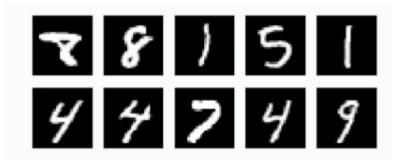
KNN: K=10



KNN: K=100

Does it work?

- MNIST: black and white image classification
 - 60k train, 10k test points
 - $d = 28 \times 28 = 784$, 10 classes (0 through 9)
 - Canonical "easy ML task"



CLASSIFIER	PREPROCESSING	TEST ERROR RATE (%)	Reference
Linear Classifiers			
linear classifier (1-layer NN)	none	12.0	LeCun et al. 1998
K-nearest-neighbors, Euclidean (L2)	none	3.09	Kenneth Wilder, U. Chicago
K-nearest-neighbors, L3	none	2.83	Kenneth Wilder, U. Chicago
			۰ ۲
K-NN with non-linear deformation (IDM)	shiftable edges	0.54	Keysers et al. IEEE PAMI 2007
K-NN with non-linear deformation (P2DHMDM)	shiftable edges	0.52	Keysers et al. IEEE PAMI 2007
2-layer NN, 300 hidden units, mean square error	none	4.7	LeCun et al. 1998
Convolutional net LeNet-4	none	1.1	LeCun et al. 1998

Some theory

- Suppose $n \to \infty$. Then $L_{1NN} \leq 2L_{Bayes}(1 L_{Bayes})$. [Cover-Hart '67]
 - E.g., suppose Bayes classifier makes 0 error. Then 1NN has 0 error*
 - *with infinite training data
 - Bayes classifier makes 0 error. Then 1NN has $\frac{1}{2}$ error*
 - Bayes classifier makes 0.1 error. Then 1NN has 0.18 error*
- Note that *n* may have to be exponentially large in *d* in the worst case!
 - Curse of dimensionality