## Decision Trees

Gautam Kamath

## Example: Should I wear a jacket?

- (Draw example on board in tree format)
- Features: temperature, is cloudy?
- Label: Jacket or no jacket
- (Draw example on board in 2D picture)


## Decision Trees

- Simple and intuitive
- "Interpretable"
- Classification or Regression
- Can tend to overfit
- Can handle non-linear functions, but may fail on linear ones
- (Draw example of diagonal separator, not axis-aligned)
- (Draw example and tree with -'s on left, +'s on right, but +'s on top left and -'s on top right)
- (Do recursive splitting, informally)
- Prediction: Walk down tree, use leaf's prediction


## Building a tree

- Start with one node
- Recursively split node
- Split(leaf):
- Choose variable and threshold
- Create two leaves and partition of points
- (Draw 1D example with dense +'s on left, dense -'s on right)
- (Show a few example choices of threshold)
- Intuition: Pick split that makes leaves "pure"


## How to split?

- Choose a loss function for a node which is small for pure nodes and large for mixed ones
- Split at threshold $t$ which minimizes sum of new node costs

$$
t^{*}=\arg \min _{t} \ell\left(\left\{\left(x_{i}, y_{i}\right): x_{i} \leq t\right\}\right)+\ell\left(\left\{\left(x_{i}, y_{i}\right): x_{i}>t\right\}\right)
$$

- Only have to try at most $n$ different values of $t$
- What loss function to use?


## Loss functions? (Draw them for binary)

- Computing $\ell(S)$, where $S=\left\{\left(x_{i}, y_{i}\right)\right\}$ is some subset of examples
- Let $\hat{p}_{c}=$ fraction of $S$ with label $c=\frac{1}{|S|} \sum_{i \in S} \mathbf{1}\left\{y_{i}=c\right\}$
- (Give example with 40 's and 2 1's)
- $\hat{y}=\arg \max _{c} \hat{p}_{c}$
- Misclassification loss: $\ell(S)=1-\hat{p}_{\hat{y}}$
- If all 0 ' $s, \hat{p}_{0}=1, \ell(S)=1-1=0$. If 50-50, $\hat{p}_{0}=\hat{p}_{1}=1 / 2, \ell(S)=1 / 2$
- Entropy: $\ell(S)=-\sum_{\text {classes }} \hat{p}_{c} \log \hat{p}_{c}$
- Gini index: $\ell(S)=\sum_{\text {classes }} \hat{p}_{c}\left(1-\hat{p}_{c}\right)$
- In regression setting: $\ell(S)=\min _{p} \sum_{i \in S}\left(y_{i}-p\right)^{2}=\sum_{i \in S}\left(y_{i}-\bar{y}_{S}\right)^{2}$


## Which variable to split on? Try all, pick best

$$
\begin{aligned}
S_{L}= & \left\{\left(x_{i}, y_{i}\right): x_{i j} \leq t\right\}, S_{R}=\left\{\left(x_{i}, y_{i}\right): x_{i j}>t\right\} \\
& \left(j^{*}, t^{*}\right)=\arg \min _{j, t}\left|S_{L}\right| \ell\left(S_{L}\right)+\left|S_{R}\right| \ell\left(S_{R}\right)
\end{aligned}
$$

Gini index: $\sum_{\text {classes } c} \hat{p}_{c}\left(1-\hat{p}_{c}\right)$
Split on smokes?
No: $\hat{p}_{0}=\frac{1}{4}, \hat{p}_{1}=\frac{3}{4} \cdot$ Yes: $\hat{p}_{0}=\frac{2}{3}, \hat{p}_{1}=\frac{1}{3}$.
cost: $4 \cdot\left(\left(\frac{3}{4}\right)\left(\frac{1}{4}\right)+\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)\right)+6 \cdot\left(\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)+\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)\right)=4.16$
Split on age? (Cheat to save time: use 35 as split)
$\leq 35: \hat{p}_{0}=1, \hat{p}_{1}=0 .>35: \hat{p}_{0}=\frac{1}{6}, \hat{p}_{1}=\frac{5}{6}$.
Cost: $4 \cdot((0)(1)+(1)(0))+6 \cdot\left(\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)+\left(\frac{5}{6}\right)\left(\frac{1}{6}\right)\right)=1.66$

| Age | Smokes | Cancer? |
| :--- | :--- | :--- |
| 10 | No | 0 |
| 18 | Yes | 0 |
| 25 | No | 0 |
| 35 | Yes | 0 |
| 50 | No | 1 |
| 55 | Yes | 1 |
| 70 | Yes | 1 |
| 80 | No | 0 |
| 85 | Yes | 1 |
| 90 | Yes | 1 |

## Stopping?

- Depth
- Running time
- Few examples at each leaf
- Leaves are all homogeneous
- Small improvements via a split
- $\Delta=\ell(S)-\left(\ell\left(S_{L}\right)+\ell\left(S_{R}\right)\right)$


## Pruning

- Grow tree "fully" without stopping early, regularize over subtrees
- $\min \sum_{\text {leafs } v}$ "error" in leaf $v+\alpha$ (\# of leafs)
- (Draw different trees at stages, indicate $\alpha=0$ vs $\infty$ cases)


## Decision Stump

- A three node decision tree (draw)
- Fast, but not very good

