Decision Trees

Gautam Kamath

Example: Should I wear a jacket?

- (Draw example on board in tree format)
 - Features: temperature, is cloudy?
 - Label: Jacket or no jacket
- (Draw example on board in 2D picture)

Decision Trees

- Simple and intuitive
- "Interpretable"
- Classification or Regression
- Can tend to overfit
- Can handle non-linear functions, but may fail on linear ones
 - (Draw example of diagonal separator, not axis-aligned)
 - (Draw example and tree with –'s on left, +'s on right, but +'s on top left and –'s on top right)
 - (Do recursive splitting, informally)
- Prediction: Walk down tree, use leaf's prediction

Building a tree

- Start with one node
- Recursively split node
- Split(leaf):
 - Choose variable and threshold
 - Create two leaves and partition of points
- (Draw 1D example with dense +'s on left, dense -'s on right)
- (Show a few example choices of threshold)
- Intuition: Pick split that makes leaves "pure"

How to split?

- Choose a loss function for a node which is small for pure nodes and large for mixed ones
- Split at threshold t which minimizes sum of new node costs $t^* = \arg \min_t \ell(\{(x_i, y_i) : x_i \le t\}) + \ell(\{(x_i, y_i) : x_i > t\})$
- Only have to try at most n different values of t
- What loss function to use?

Loss functions? (Draw them for binary)

- Computing $\ell(S)$, where $S = \{(x_i, y_i)\}$ is some subset of examples
- Let $\hat{p}_c = \text{fraction of } S$ with label $c = \frac{1}{|S|} \sum_{i \in S} \mathbf{1} \{ y_i = c \}$
- (Give example with 4 0's and 2 1's)
- $\hat{y} = \arg \max_{c} \hat{p}_{c}$
- Misclassification loss: $\ell(S) = 1 \hat{p}_{\hat{y}}$ • If all 0's, $\hat{p}_0 = 1$, $\ell(S) = 1 - 1 = 0$. If 50-50, $\hat{p}_0 = \hat{p}_1 = 1/2$, $\ell(S) = 1/2$
- Entropy: $\ell(S) = -\sum_{classes c} \hat{p}_c \log \hat{p}_c$
- Gini index: $\ell(S) = \sum_{classes c} \hat{p}_c (1 \hat{p}_c)$
- In regression setting: $\ell(S) = \min_p \sum_{i \in S} (y_i p)^2 = \sum_{i \in S} (y_i \overline{y}_S)^2$

Which variable to split on? Try all, pick best

$$S_{L} = \{(x_{i}, y_{i}) : x_{ij} \le t\}, S_{R} = \{(x_{i}, y_{i}) : x_{ij} > t\}$$

(j*, t*) = arg min |S_L|ℓ(S_L) + |S_R|ℓ(S_R)

Gini index: $\sum_{classes c} \hat{p}_c (1 - \hat{p}_c)$ Split on smokes?

No:
$$\hat{p}_0 = \frac{1}{4}$$
, $\hat{p}_1 = \frac{3}{4}$. Yes: $\hat{p}_0 = \frac{2}{3}$, $\hat{p}_1 = \frac{1}{3}$.
Cost: $4 \cdot \left(\left(\frac{3}{4} \right) \left(\frac{1}{4} \right) + \left(\frac{1}{4} \right) \left(\frac{3}{4} \right) \right) + 6 \cdot \left(\left(\frac{2}{3} \right) \left(\frac{1}{3} \right) + \left(\frac{1}{3} \right) \left(\frac{2}{3} \right) \right) = 4.16$

Split on age? (Cheat to save time: use 35 as split) $\leq 35: \hat{p}_0 = 1, \hat{p}_1 = 0. > 35: \hat{p}_0 = \frac{1}{6}, \hat{p}_1 = \frac{5}{6}.$ Cost: $4 \cdot ((0)(1) + (1)(0)) + 6 \cdot ((\frac{1}{6})(\frac{5}{6}) + (\frac{5}{6})(\frac{1}{6})) = 1.66$

Age	Smokes	Cancer?
10	No	0
18	Yes	0
25	No	0
35	Yes	0
50	No	1
55	Yes	1
70	Yes	1
80	No	0
85	Yes	1
90	Yes	1

Stopping?

- Depth
- Running time
- Few examples at each leaf
- Leaves are all homogeneous
- Small improvements via a split
 - $\Delta = \ell(S) (\ell(S_L) + \ell(S_R))$

Pruning

- Grow tree "fully" without stopping early, regularize over subtrees
- min $\sum_{\text{leafs } v}$ "error" in leaf $v + \alpha$ (# of leafs)
- (Draw different trees at stages, indicate $\alpha = 0$ vs ∞ cases)

Decision Stump

- A three node decision tree (draw)
- Fast, but not very good