Bagging and Boosting

Gautam Kamath

Bagging

Bagging: Bootstrap Aggregating

- Bootstrap sampling + aggregation
- Example: estimate μ given $X_1, \dots, X_n \sim N(\mu, \sigma^2)$
- Simple solution: use empirical mean $\hat{\mu} = \frac{1}{n} \sum X_i$ • Note $E[\hat{\mu}] = \mu$, $Var[\hat{\mu}] = Var\left[\frac{1}{n} \sum X_i\right] = \frac{1}{n^2} Var[\sum X_i] = \frac{1}{n^2} \cdot n \cdot Var[X_1] = \frac{\sigma^2}{n}$.
- Variance may be very large...
- If we have *Bn* points from $N(\mu, \sigma^2)$, can form $S_1 = \{X_1, ..., X_n\}, S_2 = \{X_{n+1}, ..., X_{2n}\}, ..., S_B = \{X_{(B-1)n+1}, ..., X_{Bn}\}$ • $\hat{\mu}^{(j)} = \frac{1}{n} \sum_{z \in S_j} z$ and $\hat{\mu}^{(avg)} = \frac{1}{B} \sum_{j \in [B]} \hat{\mu}^{(j)}$ • $E[\hat{\mu}^{(avg)}] = \mu$, $Var\left[\frac{1}{B} \sum_{j \in [B]} \hat{\mu}^{(j)}\right] = \frac{1}{B^2} \cdot B \cdot \frac{\sigma^2}{n} = \frac{\sigma^2}{nB}$

Bootstrap Sampling

- Averaging over *B* independent datasets reduces variance by factor *B*
 - But needs *B* times more data...
- Idea: cheat and just reuse parts of the same dataset!
 - Not independent, but still seems to work
- Bootstrap sampling \approx sampling with replacement

Bootstrap Example

- Given dataset of size n, create B datasets of size n, where each is constructed by drawing n samples (with replacement) from original
- Example: Given dataset X_1, X_2, X_3, X_4, X_5
- $S_1 = \{X_3, X_4, X_1, X_1, X_4\}, S_2 = \{X_5, X_5, X_3, X_1, X_2\}, \dots, S_B = \cdots$
- Again, use $\hat{\mu}^{(j)} = \frac{1}{n} \sum_{z \in S_j} z$ and $\hat{\mu}^{(avg)} = \frac{1}{B} \sum_{j \in [B]} \hat{\mu}^{(j)}$
- $E[\hat{\mu}^{(avg)}] = \mu$, $\operatorname{Var}\left[\frac{1}{B}\sum_{j\in[B]}\hat{\mu}^{(j)}\right] = ??$
- Can't compute variance as before, since we lost independence
- Still works in practice by reducing variance anyway!

Bagging in ML

- Some methods are inherently high variance
- Decision trees
 - Learn decision tree on 2 halves of the same dataset \rightarrow (very?) different trees
- Use bootstrap aggregating to reduce variance
- 1. Bootstrap sample B datasets of size n
- 2. Run some learning algorithm on each, get classifiers $\hat{f}^{(1)}, \dots, \hat{f}^{(B)}$
- 3. Aggregate $\hat{f}^{(1)}, \dots, \hat{f}^{(B)}$
 - How? Regression $\hat{f}(x) = \frac{1}{B} \sum \hat{f}^{(j)}(x)$.
 - Classification $\hat{f}(x) = \text{majority vote of } \hat{f}^{(j)}(x)$

Random Forests

- Bagging on decision trees
 - Twist to add randomness/make bootstrap samples "look" more independent
- Standard decision trees: When choosing which feature to split on, look at all d features and pick the "best" one
 - Downside: if one feature is very informative, will be used in all B datasets
- Random forests: When choosing which feature to split on, look at a random subsample of $m \ll d$ features and pick the "best" one
 - Say, $m = \sqrt{d}$
 - Resample for each split

Random Forests

Number of Trees

Number of Trees

Boosting

Boosting

- Given several "weak learners," can we combine them into a "strong learner"?
- Weak learner: "55% accurate" (slightly better than random guess)
 - Focus on binary classification today
- Strong learner: "90%+ accurate" (a good classifier)
- Iterative process. Train a classifier. "Downweight" points it gets right, "upweight" points it gets wrong. Train classifier on new weighted dataset (draw)
- Bit of a diversion until we get to that...

"Online Learning with Experts"

- Example: Horse racing, with *n* horses and *T* races. How to choose which horse to bet on? How to update your bet after each race?
- More general setting, T rounds of the following:
 - 1. At round *t*, algorithm specifies weights $p_1^{(t)}$, ..., $p_n^{(t)}$ such that $\sum_i p_i^{(t)} = 1$
 - Choose a distribution over the different "experts"
 - 2. Algorithm experiences "loss" at time t of $\langle p^{(t)}, \ell^{(t)} \rangle$
 - $\ell^{(t)} \in [0,1]^n$ is an adversarially picked loss vector
- Goal: Minimize $\sum_{t=1}^{T} \langle p^{(t)}, \ell^{(t)} \rangle$
- Try to compete with "best single expert in hindsight"
 - $\min_{i} \sum_{t=1}^{T} \ell_{i}^{(t)}$ -- same as goal when $p_{i}^{(t)} = 1$ for all t

Hedge Algorithm

Hedge(
$$\beta$$
), where $\beta \in [0,1]$
1. Initialize $w^{(1)} = [1/n, ..., 1/n] \in \mathbb{R}^n$
2. For $t = 1, ..., T$
1. Set $p^{(t)} = \frac{w^{(t)}}{\sum_i w_i^{(t)}}$ (normalize w into a distribution)
2. Receive loss $\langle p^{(t)}, \ell^{(t)} \rangle$
3. Update $w_i^{(t+1)} = w_i^{(t)} \beta^{\ell_i^{(t)}}$ (downweight experts based on loss)
Guarantee: $\sum_{t=1}^T \langle p^{(t)}, \ell^{(t)} \rangle \leq \frac{1}{1-\beta} \left(\log n + \log(1/\beta) \min_i \sum_{t=1}^T \ell_i^{(t)} \right)$

• Must choose β to balance the two costs

Hedge Guarantees

•
$$\frac{1}{T}\sum_{t=1}^{T} \langle p^{(t)}, \ell^{(t)} \rangle \leq \frac{1}{T} \min_{i} \sum_{t=1}^{T} \ell_{i}^{(t)} + O\left(\sqrt{\frac{\log n}{T}}\right)$$

- LHS: average loss at each step
- RHS: average loss of best expert in hindsight, plus "regret"
- Regret goes to 0 as $T \to \infty$
- We can be very competitive with choosing the best expert in hindsight!
- Very powerful framework! Useful in linear programming, game theory, etc.
- Now, how do we use this for standard ML classification...?

AdaBoost

- Given algorithm WeakLearn that gets 55% accuracy on a training set. Can we boost this to high probability?
- Wrong way: Run the algorithm many times on the dataset, treat resulting classifiers as "experts." "Put large weight on good classifiers"
- Right way: Treat the *datapoints* as experts. Put large weight on points that haven't been learned yet.

AdaBoost

- 1. Initialize $w^{(1)} = [1/n, ..., 1/n] \in \mathbf{R}^n$
- 2. For t = 1, ..., T1. Set $p^{(t)} = \frac{w^{(t)}}{\sum_{i} w_{i}^{(t)}}$ (normalize *w* into a distribution)
 - 2. Run WeakLearn on training set (with weights $p^{(t)}$)
 - Obtain classifier $h^{(t)}$ which maps (x, y) datapoints to [0,1] (confidence in classification)
 - 3. Calculate error $\varepsilon_t = \sum_i p_i^{(t)} |h^{(t)}(x_i) y_i|$ (should be < 0.5 by WeakLearn guarantees)
 - 4. Define $\beta_t = \frac{\varepsilon_t}{1 \varepsilon_t}$, if $\varepsilon_t \le 1/2$ set $w_i^{(t+1)} = w_i^{(t)} \beta_t^{1 |h^{(t)}(x_i) y_i|}$
 - Note: If ε_t big, then β_t is big. Many errors, so don't downweight points!

3.
$$h(x) = 1$$
 if $\sum_{t=1}^{T} \log\left(\frac{1}{\beta_t}\right) h^{(t)}(x) \ge \frac{1}{2} \sum_{t=1}^{T} \log\left(\frac{1}{\beta_t}\right), 0$ else

Illustration of AdaBoost

Training Error

- Training error: $\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{h(x_i) \neq y_i\} \le 2^T \prod_{t=1}^T \sqrt{\varepsilon_t (1 \varepsilon_t)}$
- Suppose we say $\varepsilon_t \leq \frac{1}{2} \gamma$ (bound on error of *t*-th classifier)
- Then training error $\leq \exp(-2T\gamma^2)$ (decreases exponentially fast)
- But we really want good test error...
- An alternate perspective: gradient descent on loss $\sum e^{-y_i h(x_i)}$
- Generalize well when using a simple base classifier

Overfitting with AdaBoost

Overfitting with AdaBoost

Face detection application (Viola, Jones '01)

- Start with very very simple classifiers
- Use boosting to combine into something better

Face detection application (Viola, Jones '01)

Bagging and Boosting

- "Simple" way to improve performance
- Generic, flexible with any base learner
- Loses some interpretability
- Bagging: can be done in parallel
- Boosting: inherently sequential (thus takes lost of time)