
Bagging and Boosting
Gautam Kamath

Bagging

Bagging: Bootstrap Aggregating

• Bootstrap sampling + aggregation

• Example: estimate 𝜇 given 𝑋1, … , 𝑋𝑛 ∼ 𝑁(𝜇, 𝜎2)

• Simple solution: use empirical mean Ƹ𝜇 =
1

𝑛
∑𝑋𝑖

• Note 𝐸 ො𝜇 = 𝜇, Var ො𝜇 = Var
1

𝑛
∑𝑋𝑖 =

1

𝑛2
Var ∑𝑋𝑖 =

1

𝑛2
⋅ 𝑛 ⋅ Var 𝑋1 =

𝜎2

𝑛
.

• Variance may be very large…

• If we have 𝐵𝑛 points from 𝑁 𝜇, 𝜎2 , can form 𝑆1 = 𝑋1, … , 𝑋𝑛 , 𝑆2 =
𝑋𝑛+1, … , 𝑋2𝑛 , … , 𝑆𝐵 = 𝑋 𝐵−1 𝑛+1, … , 𝑋𝐵𝑛

• Ƹ𝜇(𝑗) =
1

𝑛
∑𝑧∈𝑆𝑗

𝑧 and Ƹ𝜇(𝑎𝑣𝑔) =
1

𝐵
∑𝑗∈[𝐵] Ƹ𝜇(𝑗)

• 𝐸 Ƹ𝜇 𝑎𝑣𝑔 = 𝜇, Var
1

𝐵
∑𝑗∈ 𝐵 Ƹ𝜇 𝑗 =

1

𝐵2
⋅ 𝐵 ⋅

𝜎2

𝑛
=

𝜎2

𝑛𝐵

Bootstrap Sampling

• Averaging over 𝐵 independent datasets reduces variance by factor 𝐵
• But needs 𝐵 times more data…

• Idea: cheat and just reuse parts of the same dataset!
• Not independent, but still seems to work

• Bootstrap sampling ≈ sampling with replacement

Bootstrap Example

• Given dataset of size 𝑛, create 𝐵 datasets of size 𝑛, where each is
constructed by drawing 𝑛 samples (with replacement) from original

• Example: Given dataset 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5
• 𝑆1 = 𝑋3, 𝑋4, 𝑋1, 𝑋1, 𝑋4 , 𝑆2 = 𝑋5, 𝑋5, 𝑋3, 𝑋1, 𝑋2 , … , 𝑆𝐵 = ⋯

• Again, use ො𝜇(𝑗) =
1

𝑛
∑𝑧∈𝑆𝑗

𝑧 and ො𝜇(𝑎𝑣𝑔) =
1

𝐵
∑𝑗∈[𝐵] ො𝜇

(𝑗)

• 𝐸 ො𝜇 𝑎𝑣𝑔 = 𝜇, Var
1

𝐵
∑𝑗∈ 𝐵 ො𝜇 𝑗 =? ?

• Can’t compute variance as before, since we lost independence

• Still works in practice by reducing variance anyway!

Bagging in ML

• Some methods are inherently high variance

• Decision trees
• Learn decision tree on 2 halves of the same dataset → (very?) different trees

• Use bootstrap aggregating to reduce variance

1. Bootstrap sample 𝐵 datasets of size 𝑛

2. Run some learning algorithm on each, get classifiers መ𝑓(1), … , መ𝑓(𝐵)

3. Aggregate መ𝑓(1), … , መ𝑓(𝐵)

• How? Regression መ𝑓 𝑥 =
1

𝐵
∑ መ𝑓 𝑗 (𝑥).

• Classification መ𝑓 𝑥 = majority vote of መ𝑓 𝑗 (𝑥)

Random Forests

• Bagging on decision trees
• Twist to add randomness/make bootstrap samples “look” more independent

• Standard decision trees: When choosing which feature to split on,
look at all 𝑑 features and pick the “best” one
• Downside: if one feature is very informative, will be used in all 𝐵 datasets

• Random forests: When choosing which feature to split on, look at a
random subsample of 𝑚 ≪ 𝑑 features and pick the “best” one
• Say, 𝑚 = 𝑑

• Resample for each split

Random Forests

Boosting

Boosting

• Given several “weak learners,” can we combine them into a “strong
learner”?

• Weak learner: “55% accurate” (slightly better than random guess)
• Focus on binary classification today

• Strong learner: “90%+ accurate” (a good classifier)

• Iterative process. Train a classifier. “Downweight” points it gets right,
“upweight” points it gets wrong. Train classifier on new weighted
dataset (draw)

• Bit of a diversion until we get to that…

“Online Learning with Experts”

• Example: Horse racing, with 𝑛 horses and 𝑇 races. How to choose
which horse to bet on? How to update your bet after each race?

• More general setting, 𝑇 rounds of the following:

1. At round 𝑡, algorithm specifies weights 𝑝1
(𝑡)
, … , 𝑝𝑛

(𝑡)
such that ∑𝑖 𝑝𝑖

(𝑡)
= 1

• Choose a distribution over the different “experts”

2. Algorithm experiences “loss” at time 𝑡 of ⟨𝑝 𝑡 , ℓ(𝑡)⟩
• ℓ 𝑡 ∈ 0,1 𝑛 is an adversarially picked loss vector

• Goal: Minimize ∑𝑡=1
𝑇 ⟨𝑝 𝑡 , ℓ(𝑡)⟩

• Try to compete with “best single expert in hindsight”

• min
𝑖

∑𝑡=1
𝑇 ℓ𝑖

(𝑡)
-- same as goal when 𝑝𝑖

(𝑡)
= 1 for all 𝑡

Hedge Algorithm

Hedge(𝛽), where 𝛽 ∈ [0,1]

1. Initialize 𝑤(1) = 1/𝑛,… , 1/𝑛 ∈ 𝐑𝑛

2. For 𝑡 = 1,… , 𝑇

1. Set 𝑝(𝑡) =
𝑤 𝑡

∑𝑖𝑤𝑖
(𝑡) (normalize 𝑤 into a distribution)

2. Receive loss ⟨𝑝 𝑡 , ℓ(𝑡)⟩

3. Update 𝑤𝑖
(𝑡+1)

= 𝑤𝑖
(𝑡)
𝛽ℓ𝑖

(𝑡)

(downweight experts based on loss)

Guarantee:∑𝑡=1
𝑇 ⟨𝑝 𝑡 , ℓ(𝑡)⟩ ≤

1

1−𝛽
log 𝑛 + log(1/𝛽)min

𝑖
∑𝑡=1
𝑇 ℓ𝑖

𝑡

• Must choose 𝛽 to balance the two costs

Hedge Guarantees

•
1

𝑇
∑𝑡=1
𝑇 ⟨𝑝 𝑡 , ℓ(𝑡)⟩ ≤

1

𝑇
min
𝑖
∑𝑡=1
𝑇 ℓ𝑖

𝑡
+ 𝑂

log 𝑛

𝑇

• LHS: average loss at each step

• RHS: average loss of best expert in hindsight, plus “regret”

• Regret goes to 0 as 𝑇 → ∞

• We can be very competitive with choosing the best expert in
hindsight!

• Very powerful framework! Useful in linear programming, game
theory, etc.

• Now, how do we use this for standard ML classification…?

AdaBoost

• Given algorithm WeakLearn that gets 55% accuracy on a training set.
Can we boost this to high probability?

• Wrong way: Run the algorithm many times on the dataset, treat
resulting classifiers as “experts.” “Put large weight on good classifiers”

• Right way: Treat the datapoints as experts. Put large weight on points
that haven’t been learned yet.

AdaBoost

1. Initialize 𝑤(1) = 1/𝑛,… , 1/𝑛 ∈ 𝐑𝑛

2. For 𝑡 = 1,… , 𝑇

1. Set 𝑝(𝑡) =
𝑤 𝑡

∑𝑖𝑤𝑖
(𝑡) (normalize 𝑤 into a distribution)

2. Run WeakLearn on training set (with weights 𝑝(𝑡))
• Obtain classifier ℎ(𝑡) which maps (𝑥, 𝑦) datapoints to [0,1] (confidence in classification)

3. Calculate error 𝜀𝑡 = ∑𝑖 𝑝𝑖
(𝑡)
|ℎ 𝑡 𝑥𝑖 − 𝑦𝑖| (should be < 0.5 by WeakLearn

guarantees)

4. Define 𝛽𝑡 =
𝜀𝑡

1−𝜀𝑡
, if 𝜀𝑡 ≤ 1/2 set 𝑤𝑖

(𝑡+1)
= 𝑤𝑖

(𝑡)
𝛽𝑡
1−|ℎ 𝑡 𝑥𝑖 −𝑦𝑖|

• Note: If 𝜀𝑡 big, then 𝛽𝑡 is big. Many errors, so don’t downweight points!

3. ℎ 𝑥 = 1 if ∑𝑡=1
𝑇 log

1

𝛽𝑡
ℎ 𝑡 𝑥 ≥

1

2
∑𝑡=1
𝑇 log

1

𝛽𝑡
, 0 else

Illustration of AdaBoost

Training Error

• Training error:
1

𝑛
∑𝑖=1
𝑛 𝟏 ℎ 𝑥𝑖 ≠ 𝑦𝑖 ≤ 2𝑇ς𝑡=1

𝑇 𝜀𝑡 1 − 𝜀𝑡

• Suppose we say 𝜀𝑡 ≤
1

2
− 𝛾 (bound on error of 𝑡-th classifier)

• Then training error ≤ exp −2𝑇𝛾2 (decreases exponentially fast)

• But we really want good test error…

• An alternate perspective: gradient descent on loss ∑𝑒−𝑦𝑖ℎ 𝑥𝑖

• Generalize well when using a simple base classifier

Overfitting with AdaBoost

Overfitting with AdaBoost

Face detection application (Viola, Jones ’01)

• Start with very very simple
classifiers

• Use boosting to combine into
something better

Face detection application (Viola, Jones ’01)

Bagging and Boosting

• “Simple” way to improve performance

• Generic, flexible with any base learner

• Loses some interpretability

• Bagging: can be done in parallel

• Boosting: inherently sequential (thus takes lost of time)

