Multilayer Perceptrons

Gautam Kamath

Onto Neural Networks

Recall: The XOR Problem

- (Draw it)
- There is no linear separator which separates the +'s from the -'s
- Can prove it, but I won't
- How can we solve this problem?
- Kernels
- Apply mapping to data, use linear model on top
- Can be some generic kernel, "hand-crafted" features (domain expertise), etc.
- Neural Network
- Learn a mapping of data (from data), use linear model on top
- Learn a representation

Drawing some old models

- (Draw perceptron in graphical form)
- $x \in \mathbf{R}^{2}, \tilde{y}=x_{1} w_{1}+x_{2} w_{2}+b=\langle x, w\rangle+b$
- (Add on sigmoid to output to make into logistic regression)
- $\operatorname{sigmoid}(t)=\sigma(t)=\frac{1}{1+e^{-t}}$
- $\hat{y}=\frac{1}{1+\exp (-\langle w, x\rangle-b)}$ (logistic regression)

Drawing a simple multilayer perceptron

- (Draw 2LNN with width-2 hidden layer, x input, u and c first layer weights and biases, z hidden layer pre-activation, f non-linearity, h hidden layer post-activation, w and b second layer weights and biases, \tilde{y} output)
- (Label input layer, hidden layer, representation layer, output layer, non-linear activation $\mathbf{R} \rightarrow \mathbf{R}$)

Some calculations for XOR

- $z=U x+c, h=f(z), \tilde{y}=\langle h, w\rangle+b$
- Consider: $U=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], c=\left[\begin{array}{c}0 \\ -1\end{array}\right], w=\left[\begin{array}{c}2 \\ -4\end{array}\right], b=-1$
- Parameters to be learned, but suppose they're just given for now
- Choose $f(t)=\max (0, t)=\operatorname{ReLU}(t)$ (draw)
- Activation function - this is a hyperparameter choice
- $x_{1}=\left[\begin{array}{l}0 \\ 0\end{array}\right], y_{1}=-1 . z=\left[\begin{array}{c}0 \\ -1\end{array}\right], h=\left[\begin{array}{l}0 \\ 0\end{array}\right], \tilde{y}=-1$
- $x_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], y_{1}=1 . z=\left[\begin{array}{l}1 \\ 0\end{array}\right], h=\left[\begin{array}{l}1 \\ 0\end{array}\right], \tilde{y}=2-1=1$, etc.
- Adding the non-linear f really gave it a lot more powerful!

Drawing a bigger multilayer perceptron

- (Draw wider three-layer MLP, input $x \in \mathbf{R}^{d}$, output $\tilde{y} \in \mathbf{R}^{m}$)
- (Illustrate depth and width, representation layer)
$\cdot z^{(1)}=W^{(1)} x, h^{(1)}=f\left(z^{(1)}\right), z^{(2)}=W^{(2)} h^{(1)}, \ldots$
- What to do with output $\tilde{y} \in \mathbf{R}^{m}$?
- Put through softmax to get distribution over m classes (confidences of each)
- $\hat{y}_{i}=\frac{\exp \left(\tilde{y}_{i}\right)}{\sum_{j=1}^{m} \exp \left(\tilde{y}_{j}\right)}$
- What loss function? Use the cross-entropy loss
- $\ell_{\theta}(x, y)=-\sum_{i=1}^{m} y_{i} \log \hat{y}_{i}$
- Use "one-hot encoding" of y : if $y=c$, then $y_{c}=1$, and $y_{i}=0$ for other entries
- $\hat{y}=g_{\theta}(x)$, where g_{θ} is a (somewhat complicated) function

Activation Functions (Draw)

- Non-linear
- Sigmoid: $\sigma(t)=\frac{1}{1+e^{-t}}=\frac{e^{t}}{1+e^{t}}$
- Tanh: $\tanh (t)=\frac{e^{t}-e^{-t}}{e^{t}+e^{-t}}$
- ReLU: $\operatorname{relu}(t)=\max (0, t)$
- Still has a strong gradient signal even if t is large

Training

-Loss function: $\arg \min _{\theta} L=\frac{1}{n} \sum_{i} \ell_{\theta}\left(x^{(i)}, y^{(i)}\right)$

- Recall $\ell_{\theta}(x, y)=-\sum_{j=1}^{m} y_{j} \log \hat{y}_{j}$
- Just use gradient descent!
- $\theta^{t}=\theta^{t-1}-\eta_{t} \nabla L_{\theta^{t-1}}$
- But... how to compute ∇L ?
- Recall $\hat{y}=g_{\theta}(x)$ is some complicated function... how to take derivative?
- Luckily computers are very good at this
- Automatic differentiation, backpropagation algorithm
- Chain rule + dynamic programming

Backpropagation (a simple example)

- Simple case: $x \in \mathbf{R}, f, g: \mathbf{R} \rightarrow \mathbf{R}$
- Say $y=g(x), z=f(y)=f(g(x)$
- Chain rule: $\frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}$
- More complex: $z=u x, h=f(z), y=w h, L=g(y)$ (draw)
- Can compute several derivatives easily: $\frac{d L}{d y}, \frac{d y}{d w}, \frac{d y}{d h}, \frac{d h}{d z}, \frac{d z}{d u}$
- But we care about derivatives of L wrt parameters u, w
- $\frac{d L}{d w}=\frac{d L}{d y} \cdot \frac{d y}{d w}$ and $\frac{d L}{d u}=\frac{d L}{d y} \cdot \frac{d y}{d h} \cdot \frac{d h}{d z} \cdot \frac{d z}{d u}$

Backpropagation (multivariate)

- Say $x \in \mathbf{R}^{m}, y \in \mathbf{R}^{n}, z \in \mathbf{R}$
- $z=f(y)=f(g(x))$
- Then $\frac{\partial z}{\partial x_{i}}=\sum_{j} \frac{\partial z}{\partial y_{j}} \frac{\partial y_{j}}{\partial x_{i}}$ (draw, must sum over all "paths" from x_{i} to z)
- Alternate notation: $\nabla_{x} Z=\left(\frac{\partial y}{\partial x}\right)^{T} \nabla_{y} z$
- Product of Jacobian matrix and gradient
- But the big picture: gradients can be decomposed as product of appropriate derivatives of subsequent layers using chain rule
- Need appropriate dynamic programming to do efficiently (backpropagation)

Universality of MLPs

- Any continuous function $g:[0,1]^{d} \rightarrow \mathbf{R}$ can be approximated arbitrarily well by some 2 layer NN with arbitrary non-polynomial activation
- (maybe draw)
- Caveat: may require the hidden layer to be incredibly wide

