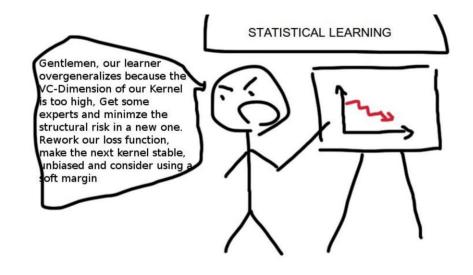
Multilayer Perceptrons

Gautam Kamath

Onto Neural Networks



Recall: The XOR Problem

- (Draw it)
- There is no linear separator which separates the +'s from the -'s
- Can prove it, but I won't
- How can we solve this problem?
- Kernels
 - Apply mapping to data, use linear model on top
 - Can be some generic kernel, "hand-crafted" features (domain expertise), etc.
- Neural Network
 - Learn a mapping of data (from data), use linear model on top
 - Learn a *representation*

Drawing some old models

- (Draw perceptron in graphical form)
- $x \in \mathbf{R}^2$, $\tilde{y} = x_1 w_1 + x_2 w_2 + b = \langle x, w \rangle + b$
- (Add on sigmoid to output to make into logistic regression)

• sigmoid(t) =
$$\sigma(t) = \frac{1}{1+e^{-t}}$$

•
$$\hat{y} = \frac{1}{1 + \exp(-\langle w, x \rangle - b)}$$
 (logistic regression)

Drawing a simple multilayer perceptron

- (Draw 2LNN with width-2 hidden layer, x input, u and c first layer weights and biases, z hidden layer pre-activation, f non-linearity, h hidden layer post-activation, w and b second layer weights and biases, ỹ output)
- (Label input layer, hidden layer, representation layer, output layer, non-linear activation $R \to R$)

Some calculations for XOR

•
$$z = Ux + c$$
, $h = f(z)$, $\tilde{y} = \langle h, w \rangle + b$

• Consider:
$$U = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $c = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $w = \begin{bmatrix} 2 \\ -4 \end{bmatrix}$, $b = -1$

• Parameters to be learned, but suppose they're just given for now

• Choose $f(t) = \max(0, t) = \operatorname{ReLU}(t)$ (draw)

• Activation function – this is a hyperparameter choice

•
$$x_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $y_1 = -1$. $z = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $h = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\tilde{y} = -1$
• $x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $y_1 = 1$. $z = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $h = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\tilde{y} = 2 - 1 = 1$, etc

• Adding the non-linear *f* really gave it a lot more powerful!

Drawing a bigger multilayer perceptron

- (Draw wider three-layer MLP, input $x \in \mathbf{R}^d$, output $\tilde{y} \in \mathbf{R}^m$)
 - (Illustrate depth and width, representation layer)

•
$$z^{(1)} = W^{(1)}x$$
, $h^{(1)} = f(z^{(1)})$, $z^{(2)} = W^{(2)}h^{(1)}$, ...

- What to do with output $\tilde{y} \in \mathbf{R}^m$?
 - Put through *softmax* to get distribution over m classes (confidences of each)

•
$$\hat{y}_i = \frac{\exp(\tilde{y}_i)}{\sum_{j=1}^m \exp(\tilde{y}_j)}$$

- What loss function? Use the cross-entropy loss
 - $\ell_{\theta}(x, y) = -\sum_{i=1}^{m} y_i \log \hat{y}_i$
 - Use "one-hot encoding" of y: if y = c, then $y_c = 1$, and $y_i = 0$ for other entries
 - $\hat{y} = g_{\theta}(x)$, where g_{θ} is a (somewhat complicated) function

Activation Functions (Draw)

- Non-linear
- Sigmoid: $\sigma(t) = \frac{1}{1+e^{-t}} = \frac{e^t}{1+e^t}$
- Tanh: $tanh(t) = \frac{e^t e^{-t}}{e^t + e^{-t}}$
- ReLU: relu(t) = max(0, t)
 - Still has a strong gradient signal even if t is large

Training

- Loss function: $\arg \min_{\theta} L = \frac{1}{n} \sum_{i} \ell_{\theta} (x^{(i)}, y^{(i)})$
 - Recall $\ell_{\theta}(x, y) = -\sum_{j=1}^{m} y_j \log \hat{y}_j$
- Just use gradient descent!
 - $\theta^t = \theta^{t-1} \eta_t \nabla L_{\theta^{t-1}}$
- But... how to compute ∇L ?
 - Recall $\hat{y} = g_{\theta}(x)$ is some complicated function... how to take derivative?
 - Luckily computers are very good at this
 - Automatic differentiation, backpropagation algorithm
 - Chain rule + dynamic programming

Backpropagation (a simple example)

- Simple case: $x \in \mathbf{R}, f, g: \mathbf{R} \to \mathbf{R}$
- Say y = g(x), z = f(y) = f(g(x))
- Chain rule: $\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$
- More complex: z = ux, h = f(z), y = wh, L = g(y) (draw)
- Can compute several derivatives easily: $\frac{dL}{dy}$, $\frac{dy}{dw}$, $\frac{dy}{dh}$, $\frac{dh}{dz}$, $\frac{dz}{du}$
- But we care about derivatives of L wrt parameters u, w

• $\frac{dL}{dw} = \frac{dL}{dy} \cdot \frac{dy}{dw}$ and $\frac{dL}{du} = \frac{dL}{dy} \cdot \frac{dy}{dh} \cdot \frac{dh}{dz} \cdot \frac{dz}{du}$

Backpropagation (multivariate)

- Say $x \in \mathbf{R}^m$, $y \in \mathbf{R}^n$, $z \in \mathbf{R}$
- z = f(y) = f(g(x))
- Then $\frac{\partial z}{\partial x_i} = \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$ (draw, must sum over all "paths" from x_i to z)
- Alternate notation: $\nabla_x z = \left(\frac{\partial y}{\partial x}\right)^T \nabla_y z$
 - Product of Jacobian matrix and gradient
 - But the big picture: gradients can be decomposed as product of appropriate derivatives of subsequent layers using chain rule
 - Need appropriate dynamic programming to do efficiently (backpropagation)

Universality of MLPs

- Any continuous function $g: [0,1]^d \to \mathbb{R}$ can be approximated arbitrarily well by some 2 layer NN with arbitrary non-polynomial activation
- (maybe draw)
- Caveat: may require the hidden layer to be incredibly wide