University of Waterloo CS480/680 2025 Fall

CS480/680: Introduction to Machine Learning
Homework 3
Due: 11:59 pm, November 14, 2025, submit on LEARN and CrowdMark.
Include your name and student number!

Submit your writeup in pdf and all source code in a zip file (with proper documentation). Write a script for each
programming exercise so that the TAs can easily run and verify your results. Make sure your code runs!
[Text in square brackets are hints that can be ignored.]

Exercise 1: Adaboost (5 pts)

Recall the update rules of Adaboost:

¢
t w;
Pl - , i=1,....n (1)
Ej:l w;
e = er(he) = pr - [he(xi) # yil (2)
i=1
1 1—e€
By = 3 log ! (3)
€t
wE—H = wj exp(—yifihi(xi)), i=1,...,n. (4)

Here we use ¢ and t to index the training examples and iterations, respectively. [A] = 1 if the event A holds
and 0 otherwise. Here y; € {£1} and we also assume h;(x;) € {£1}. In this exercise we offer additional
insights about Adaboost.

a) (1 pt) Prove by induction that the updates defined above are equivalent to the following updates where
the y’s and h’s are {0, 1} rather than {£+1}:

€t

Br =

7 ~t 31—|he (i)~
e (6)

1—615

w,

where §; = y"’g'l,/ia(xi) = % € {0,1}.

[Hint: Show that p! remains the same under the two seemingly different updates.]

b) (1 pt) Recall in the logistic regression lecture we made the linear assumption on the log odds ratio:

ply =1X =x)
ply =-1X=x)

~w'x+b. (7)

Adaboost in effect tries to approximate the log odds ratio using additive functions:

Py=1X=% -,
1ng(y:—1‘X=X) N;Btht()v (8)

where each h;(x) is a weak classifier. Indeed, fixing X = x, prove that the minimizer of the following
exponential loss

min - Efexp(—yH)|X = x] (9)

is (proportional to) the log odds ratio. Here the expectation is wrt the conditional distribution p(y|X =
X).

Gautam Kamath (gckamath@uwaterloo.ca) (©)2025

University of Waterloo CS480/680 2025 Fall

[Any function can be approximated arbitrarily well by additive functions but clearly not by linear func-
tions, thus the power of Adaboost.]

c) (1 pt) Suppose h; is a weak classifier whose error ¢; > 1/2, i.e. worse than random guessing! In this case
it makes sense to flip h; to hi(x) = —hi(x). Compute the error €;(h;) and the resulting 8;. Do we get
the same update for w in ? Explain.

d) (1 pt) Adaboost is a greedy algorithm where we find the weak classifiers sequentially. At iteration ¢, the
classifiers hg, s < t are already found along with their coefficients 5s. Suppose h; is given by some oracle,
to find the optimal coefficient 3;, we solve an empirical approximation of the exponential loss @:

}52& % ZeXP(—yi [Hi—1(xi) + Bhi(x:)]), (10)

where needless to say, H;_1(x) := 22711 Bshs(x). While it is possible to solve (10} . directly, we gain more
insights by defining a distribution over the training examples (x;,y;),7 = 1,.

t_ exp(—yi Hi—1(x:))
b Z?:l exp(—yiHy—1(x;))’ (11)

so that we can rewrite " equivalently as:
min IE XP|— /3h X X ~ t. 12
ﬁellR t € p[Yy t()]a () y) | & ()

(Here the hat notation is to remind you that this is an empirical expectation specified by p? over our
training data.) Let ¢; be defined as in . Prove that the optimal 5 in is given in .

[Hint: We remind again that both y and hy(x) are {#1}-valued. Split training examples according to
hi(x;) = y; or not.]

e) (1 pt) What is the training error

€t+1 ht ZPHI [[ht Xz 7”é yzﬂ (13)

of the weak classifier h; on the next round ¢ + 1?7 Justify your answer. You may assume 0 < ¢; < 1 so
that all quantities are well-defined.

[Hint: This exercise should be simple, given what you have done in @ Split training examples according
to hi(x;) = y; or not.]

Exercise 2: CNN Implementation (8 pts)

Note: Please mention your Python version (and maybe the version of all other packages). For this exercise,
you may submit a Python notebook.

In this exercise you are going to run some experiments involving CNNs. You need Python) matplotlibl
and either |PyTorch, TensorFlow, or JAX| (PyTorch is the most popular right now and is thus strongly recom-
mended). Be sure to install all necessary dependencies. You can find detailed instructions and tutorials for
each of these libraries on the respective websites.

For all experiments, running on CPU is sufficient. You do not need to run the code on GPUs. You may
find Colab| useful for running things more efficiently (for free), but note that heavy usage may result in them
taking away your GPU (unless you pay). Before start, we suggest you review what we learned about each layer
in CNN, and read the documentation and tutorial for your framework of choice (either PyTorch, TensorFlow,

Gautam Kamath (gckamath@uwaterloo.ca) (©)2025

https://www.python.org/
https://matplotlib.org/
https://pytorch.org/get-started/locally/
https://www.tensorflow.org/tutorials/quickstart/beginner
https://jax.readthedocs.io/en/latest/notebooks/quickstart.html
https://colab.research.google.com/

University of Waterloo CS480/680 2025 Fall

or JAX).

a) Train a VGG11 net on the MNIST dataset (which should be loadable via, e.g., torchvision). VGG11 was
an earlier version of VGG16 and can be found as model A in Table 1 of this paper, whose Section 2.1 also
gives you all the details about each layer. The goal is to get the loss as close to 0 loss as possible. Note
that our input dimension is different from the VGG paper. You need to resize each image in MNIST
from its original size 28 x 28 to 32 x 32 [make sure you understand why this is].

For your convenience, we list the details of the VGGI11 architecture here. The convolutional lay-
ers are denoted as Conv(number of input channels, number of output channels, kernel size,
stride, padding); the batch normalization layers are denoted as BatchNorm(number of channels);
the max-pooling layers are denoted as MaxPool (kernel size, stride); the fully-connected layers are
denoted as FC(number of input features, number of output features); the drop out layers are
denoted as Dropout (dropout ratio):

- Conv (001, 064,
- Conv (064, 128,
- Conv (128, 256,
- Conv (256, 256,
- Conv(256, 512,
- Conv(512, 512,

1) - BatchNorm(064) - ReLU - MaxPool(2, 2)
, 1) - BatchNorm(128) - ReLU - MaxPool(2, 2)
, 1) - BatchNorm(256) - RelLU

1) - BatchNorm(256) - ReLU - MaxPool(2, 2)
, 1) - BatchNorm(512) - RelLU

, 1) - BatchNorm(512) - RelLU - MaxPool(2, 2)
- Conv(512, 512, , 1) - BatchNorm(512) - ReLU

- Conv(512, 512, 1, 1) - BatchNorm(512) - RelLU - MaxPool(2, 2)
- FC(0512, 4096) - ReLU - Dropout(0.5)

- FC(4096, 4096) - ReLU - Dropout(0.5)

- FC(4096, 10)

. .
-

-

[V

W wwwwwww
N e e

-

You should use the cross-entropy loss at the end.

[This experiment will take up to 1 hour on a CPU, so please be cautious of your time. If this running
time is not bearable, you may cut the training set to 1/10, so only have ~600 images per class instead
of the regular ~6000.]

b) Once you've done the above, the next goal is to inspect the training process. Create the following plots:

(i
(ii
(iii
(iv

1 pt
1 pt
1 pt
1 pt

test accuracy vs the number of epochs (say 3 ~ 5)
training accuracy vs the number of epochs

test loss vs the number of epochs

) (
) (
) (
) (

— — — ~—

training loss vs the number of epochs

[If running more than 1 epoch is computationally infeasible, simply run 1 epoch and try to record the
accuracy/loss after every few minibatches.]

¢) Then, it is time to inspect the generalization properties of your final model. Flip and blur the test set
images using any Python library of your choice, and complete the following:

(i) (1 pt) test accuracy vs type of flip. Try the following two types of flipping: flip each image from
left to right, and from top to bottom. Report the test accuracy after each flip. What is the effect?
Please explain the effect in one sentence.

As one resource for those working in PyTorch, you can read this doc|to learn how to build a complex
transformation pipeline. We suggest the following command for performing flipping:

torchvision.transforms.RandomHorizontalFlip(p=1)
torchvision.transforms.RandomVerticalFlip(p=1)

Gautam Kamath (gckamath@uwaterloo.ca) (©)2025

https://arxiv.org/pdf/1409.1556.pdf
https://pytorch.org/vision/stable/transforms.html

University of Waterloo CS480/680 2025 Fall

(ii) (1 pt) test accuracy vs Gaussian noise. Try adding standard Gaussian noise to each test image with
variance 0.01, 0.1, 1 and report the test accuracies. What is the effect? Please explain the effect in
one sentence.

Again for those working in PyTorch, one way of approaching this is to apply a user-defined lambda
as a new transform t which adds Gaussian noise with variance say 0.01:

t = torchvision.transforms.Lambda(lambda x : x + O.l%torch.randn_like(x))

d) (2 pts) Lastly, let us verify the effect of regularization. Retrain your model with data augmentation and

test again as in part 3. Report the test accuracies and explain what kind of data augmentation you use

in retraining.

Exercise 3: Gaussian Mixture Model (GMM) (10 pts)

Notation: For a matrix A, |A| denotes its |determinant. For a diagonal matrix| diag(s), | diag(s)| = [, s:.

Algorithm 1: EM for GMM.

10
11

12

Input: X € R"*? K € IN, initialization for model

// model includes w € Rff and for each 1<k <K, p; € R and S € Si

// >0, Ele mr =1, S, symmetric and positive definite.

// random initialization suffices for full credit.

// alternatively, can initialize r by randomly assigning each data to one of the K
components

Output: model, ¢

for iter = 1 : MAXITER do

// step 2, for each i=1,...,n
for k=1,...,K do
| ik ml Skl 2 exp[— 5 (3 — py) TS (x5 —)] // compute responsibility
// for each i=1,...,n
Ty < Z/f:l Tik
// for each k=1,...,K and i=1,...,n
Tik < Tik/Ti. // normalize
// compute negative log-likelihood
U(iter) = =37 log(r;.)
if iter > 1 && |L(iter) — {(iter — 1)| < TOL x |[(iter)| then
L break
// step 1, for each k=1,... K
Tk Dy Tik
T < r.k/n
M = Doy TikXi [Tk
Sk? — (271:1 T}Zk:Xix;//".k:) - /*l'k/'l’}T

a) (5 pts) Derive and implement the EM algorithm for the diagonal Gaussian mixture model, where all

covariance matrices are constrained to be diagonal. Algorithm [I|recaps all the essential steps and serves
as a hint rather than a verbatim instruction. In particular, you must change the highlighted steps
accordingly (with each Sy being a diagonal matrix), along with formal explanations. Analyze the space
and time complexity of your implementation.

[You might want to review the steps we took in class for a simpler case, and ensure you can derive the
updates in Algorithm Then adapt the steps to the simpler diagonal case. The solution should look

N 0o, ,) iy L
leli?:(ka)~ i*;}:: :;” - ,u? for the j-th diagonal. Multiplying an n x p matrix with a
p x m matrix costs O(mnp). Do not maintain a diagonal matrix explicitly; using a vector for its diagonal
suffices. |

like s; =

Gautam Kamath (gckamath@uwaterloo.ca) (©)2025

https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Diagonal_matrix

University of Waterloo CS480/680 2025 Fall

[Warning: Either in this part or the next one, you may run into issues involving NaNs. You will have to
diagnose these issues and fix them.]

To stop the algorithm, set a maximum number of iterations (say MAXITER = 500) and also monitor the
change of the negative log-likelihood ¢:

n K
{=— Zlog Z | 27 S |71/ exp[—3(x; — pi) S (ki —)] | (14)
i=1 k=1

where x; is the i-th column of X 7. As a debug tool, note that ¢ should decrease from step to step, and
we can stop the algorithm if the decrease is smaller than a predefined threshold, say TOL = 107°.

Run your algorithm on gmm_dataset.csv, for £ = 1 to 10. Generate a plot with k on the x-axis and the
negative log-likelihood of the data under the final trained model on the y-axis. What do you think the
most appropriate choice of k is? Explain and justify how and why you chose this value. [You may want to
focus on more than just maximizing the log-likelihood.] For your chosen value of k, report the parameters
(mixing weights, mean vectors, and vectors corresponding to the diagonals of the covariance matrices) of
your trained model. When reporting them, sort the components in increasing order of mixing weights.

(5 pts) Next, we apply (the adapted) Algorithm [1|in part Eﬂ to the MNIST dataset. For each of the 10
classes (digits), we can use its (only its) training images to estimate its (class-conditional) distribution
by fitting a GMM (with say K = 5, roughly corresponding to 5 styles of writing this digit). This gives
us the density estimate p(x|y) where x is an image (of some digit) and y is the class (digit). We can now
classify the test set using the Bayes classifier:

§(x) = arg max Pr(Y =¢)-p(X =x|Y =¢), (15)

x Pr(Y=c|X=x)

where the probabilities Pr(Y = ¢) can be estimated using the training set, e.g., the proportion of the
c-th class in the training set, and the density p(X = x|Y = ¢) is estimated using GMM for each class ¢
separately. Report your error rate on the test set as a function of K (if time is a concern, using K = 5
will receive full credit).

[Optional: Reduce dimension by [PCAl may boost accuracy quite a bit. Your running time should be on
the order of minutes (for one K), if you do not introduce extra for-loops in Algorithm [1}]

[In case you are wondering, our classification procedure above belongs to the so-called plug-in estimators
(plug the estimated densities to the known optimal Bayes classifier). However, note that estimating the
density p(X = x|Y = ¢) is actually harder than classification. Solving a problem (e.g. classification)
through some intermediate harder problem (e.g. density estimation) is almost always a bad idea.]

Gautam Kamath (gckamath@uwaterloo.ca) (©)2025

https://pytorch.org/vision/0.9/datasets.html#mnist
https://en.wikipedia.org/wiki/Principal_component_analysis

