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Binary Classification

• Given: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , …
• 𝑥𝑖: “feature vector.” Often 𝑥𝑖 ∈ 𝐑𝑑

• 𝑦𝑖: “label.” For binary classification, 𝑦𝑖 ∈ {−1,+1}
• You may also see 𝑦𝑖 ∈ {0,1}

• Idea: “Learn” a function ℎ such that ℎ 𝑥 = 𝑦
• Given a feature vector, what is the label?



Pass class example

• Feature vector 𝑥𝑖: (homework mark, exam mark)

• Label 𝑦𝑖: Passed the class?

• Dataset (draw on board):
• 90, 80 ,+1 , 40, 30 ,−1 , 50, 40 ,−1

• Can always memorize training data
• But we want to generalize!

• 50,60 , ?



Image Classifier example

• Feature vector 𝑥𝑖:

• Label 𝑦𝑖: Is this a panda or not? 

=



Statistical Learning

• Setup: Given 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 ∼𝑖.𝑖.𝑑. 𝑃
• Independent and identically distributed – may be limiting, but common assn

• Goal: Learn ℎ ∶ 𝐑𝑑 → −1,+1 such that Pr 𝑥,𝑦 ∼𝑃 ℎ 𝑥 = 𝑦 is large
• Importantly, 𝑃 is unknown (otherwise could use the “Bayes classifier”)

• What happens if we get something “out of distribution”?
• (Draw two clusters on board, wrong label and unpredictable examples)



Online Learning

• Receive examples one by one and make predictions as we go

• At each time 𝑡 = 1,2, …
• Receive feature vector 𝑥𝑖
• Choose prediction function ℎ𝑖, predict label ෝ𝑦𝑖 = ℎ𝑖(𝑥𝑖)

• View true label 𝑦𝑖. Suffer mistake if 𝑦𝑖 ≠ ෝ𝑦𝑖.



Intuition of Perceptron

• (Draw pass class example on board, add more points)

• Plausible grading scheme: if average of hw and exams > 0.5, pass.

• Equivalently: if 0.5 ⋅ homework + 0.5 ⋅ exams > 0.5, pass.
• Or: if 0.5 ⋅ homework + 0.5 ⋅ exams − 0.5 > 0, pass.

• Rewrite as: sign( 0.5,0.5 , (homework, exams) − 0.5)
• Dot product notation: 𝑢, 𝑣 = σ𝑖 𝑢𝑖𝑣𝑖
• sign 𝑎 = 1 if 𝑎 > 0, = −1 otherwise

• Let 𝑥 = (homework, exams): 𝑦 = sign( 0.5,0.5 , 𝑥 − 0.5)

• Implicit assumption in perceptron: there is some linear separator



Perceptron Algorithm

• Weight vector 𝑤, bias 𝑏

• Typically initialize 𝑤 = 0, 𝑏 = 0, set 𝛿 = 0

• “Lazy” updates: only change if a prediction is wrong

• (Examples on board. 1,1 , 1 and −1,−1 , −1 , change to −
1

4
, −

1

4
, −1 )



Notation: Padding + Pre-Multiplication

• Goal: find 𝑤, 𝑏 such that 𝑦𝑖 = sign( 𝑤, 𝑥𝑖 + 𝑏) for all 𝑖 ∈ [𝑛]
• 𝑦𝑖 = sign 𝑤, 𝑏 , 𝑥𝑖 , 1 (“padding trick”)

• 𝑦𝑖 = sign 𝑧, 𝑥𝑖 , 1 (Let 𝑧 = (𝑤, 𝑏) to simplify notation)

• 𝑦𝑖 𝑧, 𝑥𝑖 , 1 > 0 (equivalent formulation)

• 𝑧, 𝑦𝑖 𝑥𝑖 , 1 > 0

• 𝑧, 𝑎𝑖 > 0 (Let 𝑎𝑖 = 𝑦𝑖(𝑥𝑖 , 1) to simplify notation)

• Let 𝐴 be the matrix with rows 𝑎𝑖 (draw on board)

• Then goal is 𝐴𝑧 > 0 (entrywise)



Linear Separability

• (Draw picture of separable and non-separable datasets on board)

• There exists 𝑧 = (𝑤, 𝑏) such that 𝑎𝑖 , 𝑧 ≥ 𝑠 > 0 for all 𝑖 ∈ [𝑛], for 
some constant 𝑠

• Equivalently: 𝐴𝑧 ≥ 𝑠1, where 𝑠 > 0

• (Draw picture of what the 𝑠 means)



Error Bound

• Theorem: Suppose there exists some weight vector and bias 𝑧 =
(𝑤, 𝑏) such that 𝐴𝑧 ≥ 𝑠1. Then perceptron will correctly classify the 
entire dataset after at most 𝑅2 𝑧 2

2/𝑠2 mistakes, where 𝑅 =
max 𝑎𝑖 2.

• 𝑥 2 is the ℓ2-norm of 𝑥: σ𝑖 𝑥𝑖
2, measures how “big” a vector is

• (Draw picture with intuition as to why 𝑅 shows up: one with big 𝑅
and one with small 𝑅)



Error Bound (continued)

• Theorem (informal): If ∃𝑧, 𝑠 such that 𝐴𝑧 ≥ 𝑠1, perceptron makes at 
most 𝑅2 𝑧 2

2/𝑠2 mistakes, where 𝑅 = max 𝑎𝑖 2.

• But there may be many valid 𝑧, 𝑠. Scaling: if 𝐴𝑧 ≥ 𝑠1, then 𝐴(2𝑧) ≥ (2𝑠)1.

• (Draw picture on board of non-uniqueness)

• Pick the “best” one to minimize 𝑧 2
2/𝑠2 and thus the number of mistakes



Error Bound (continued)

• Theorem (informal): If ∃𝑧, 𝑠 such that 𝐴𝑧 ≥ 𝑠1, perceptron makes at 
most 𝑅2 𝑧 2

2/𝑠2 mistakes, where 𝑅 = max 𝑎𝑖 2.
• Pick the “best” one to minimize 𝑧 2

2/𝑠2 and thus the number of mistakes

min
𝑧,𝑠 :𝐴𝑧≥𝑠1

𝑧 2
2

𝑠2
= min

𝑧,𝑠 : 𝑧 2=1,𝐴𝑧≥𝑠1

1

𝑠2



Error Bound (continued)

• Theorem (informal): If ∃𝑧, 𝑠 such that 𝐴𝑧 ≥ 𝑠1, perceptron makes at 
most 𝑅2 𝑧 2

2/𝑠2 mistakes, where 𝑅 = max 𝑎𝑖 2.
• Pick the “best” one to minimize 𝑧 2

2/𝑠2 and thus the number of mistakes
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2
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1
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=
1
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𝑠 2
=

1
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𝑖
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2 =
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𝛾2



Error Bound (continued)

• Theorem (informal): If ∃𝑧, 𝑠 such that 𝐴𝑧 ≥ 𝑠1, perceptron makes at 
most 𝑅2 𝑧 2

2/𝑠2 mistakes, where 𝑅 = max 𝑎𝑖 2.
• Pick the “best” one to minimize 𝑧 2

2/𝑠2 and thus the number of mistakes
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Error Bound (continued)

• Theorem (informal): If ∃𝑧, 𝑠 such that 𝐴𝑧 ≥ 𝑠1, perceptron makes at 
most 𝑅2 𝑧 2

2/𝑠2 mistakes, where 𝑅 = max 𝑎𝑖 2.
• Pick the “best” one to minimize 𝑧 2

2/𝑠2 and thus the number of mistakes
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𝛾 = max
𝑧 2=1

min
𝑖
⟨𝑎𝑖 , 𝑧⟩ is the margin of the solution wrt the dataset.

Large margin = easy, small margin = easy (draw small vs large margin)



Uniqueness?

• Perceptron only guarantees finding some solution (may be many)

• Certainly not the “best” solution (draw picture)

• Support Vector Machines (SVMs) in a few lectures



What if the data is non-separable?

• The algorithm will never halt, perceptron will “cycle”

• It is not the right algorithm for data which is not linearly separable



When to terminate?

• When all points are classified correctly
• Training error stops decreasing

• “Validation error” stops decreasing
• Validation dataset: another dataset that you don’t train on, use to measure 

quality of solution so far

• Some iteration or update budget is exhausted

• Weights aren’t changing much



Beyond Binary Classification: Multiclass

• Is a picture a dog, cat, bird, horse, frog?

• One-versus-all
• Train 𝑘 classifiers, one for dog vs. not dog, one for cat vs. not cat, etc.

• Output prediction argmax𝑖⟨𝑧𝑖 , 𝑥⟩ for the label of point 𝑥

• One-versus-one

• Train 𝑘
2

classifiers, one for dog vs. cat, one for dog vs. bird, etc.

• To classify a point, run all of these 𝑘
2

classifiers and output the majority vote


