Perceptron

Gautam Kamath

Binary Classification

* Given: (xll yl)) (XZ, yZ);
e x;: “feature vector.” Often x; € R?

* y;: “label.” For binary classification, y; € {—1, +1}
* You may also see y; € {0,1}

* Idea: “Learn” a function h such that h(x) =y
* Given a feature vector, what is the label?

Pass class example

* Feature vector x;: (homework mark, exam mark)
* Label y;: Passed the class?

e Dataset (draw on board):
- ((90,80),+1),((40,30),—-1),((50,40),—1)

e Can always memorize training data
* But we want to generalize!

- ((50,60),7)

Image Classifier example

* Feature vector x;:

* Label y;: Is this a panda or not?

9 13
1 11

Slos =1 on

W =] N

Statistical Learning

* Setup: Given (X1, ¥1), -, (X0, Yn) ~iia P
* Independent and identically distributed — may be limiting, but common assn
* Goal: Learn h : RY - {—1, +1} such that Pr(, ,,y_p[h(x) = y] is large
* Importantly, P is unknown (otherwise could use the “Bayes classifier”)

* What happens if we get something “out of distribution”?
e (Draw two clusters on board, wrong label and unpredictable examples)

Online Learning

* Receive examples one by one and make predictions as we go

e Ateachtimet = 1,2, ...
* Receive feature vector x;
* Choose prediction function h;, predict label y; = h;(x;)
* View true label y;. Suffer mistake if y; + ;.

Intuition of Perceptron

 (Draw pass class example on board, add more points)
* Plausible grading scheme: if average of hw and exams > 0.5, pass.

e Equivalently: if 0.5 - homework + 0.5 - exams > 0.5, pass.
e Or:if 0.5 - homework + 0.5 - exams — 0.5 > 0, pass.

* Rewrite as: sign({(0.5,0.5), (homework, exams)) — 0.5)
* Dot product notation: (u, v) = },; u;v;
 sign(a) = 1ifa > 0, = —1 otherwise

* Let x = (homework, exams): y = sign({(0.5,0.5), x) — 0.5)
* Implicit assumption in perceptron: there is some linear separator

Perceptron Algorithm

Algorithm: The Perceptron (Rosenblatt 1958)

Input: Dataset D = {(x;,y;) € R x {+1} : i =1,...,n}, initialization w € R? and b € R, threshold
60>0
Output: approximate solution w and b

1 fort=1,2....do

2 receive training example index I; € {1,...,n} // the index [; can be random
3 if y;,(w'x;, +b) <6 then

4 W < W + Y1, X], // update only after making a ‘“mistake”
5 L b b+ yy,

Weight vector w, bias b
Typically initialize w = 6,b =0,setd6 =0
“Lazy” updates: only change if a prediction is wrong

(Examples on board. ((1,1), 1) and ((—1, -1), —1), change to ((—i, —1) , —1))

Notation: Padding + Pre-Multiplication

* Goal: find w, b such that y; = sign({w, x;) + b) for all i € [n]

* y; = sign({(w, b), (x;,1))) (“padding trick”)
 y; = sign({(z, (x;, 1))) (Let z = (w, b) to simplify notation)
* vi{z,(x;,1)) > 0 (equivalent formulation)

° (Z)yi(xi) 1)> > 0
* (z,a;) > 0 (Let a; = y;(x;, 1) to simplify notation)

* Let A be the matrix with rows a; (draw on board)

* Then goalis Az > 0 (entrywise)

Linear Separability

 (Draw picture of separable and non-separable datasets on board)

* There exists z = (w, b) such that (a;,z) = s > 0 foralli € [n], for
some constant s

e Equivalently: Az = ST, where s > 0
 (Draw picture of what the s means)

Error Bound

* Theorem: Suppose there exists some weight vector and bias z =

(w, b) such that Az > s1. Then perceptron will correctly classify the
entire dataset after at most R?||z]||5/s? mistakes, where R =
max||a;l.

* |lx|l, is the £,-norm of x: [, x7, measures how “big” a vector is

 (Draw picture with intuition as to why R shows up: one with big R
and one with small R)

Error Bound (continued)

* Theorem (informal): If 3z, s such that Az > ST, perceptron makes at
most R?||z||5/s? mistakes, where R = max]||a;]|.
* But there may be many valid z, s. Scaling: if Az > s1, then A(2z) =2 (ZS)T.
e (Draw picture on board of non-uniqueness)
e Pick the “best” one to minimize ||z||5/s? and thus the number of mistakes

Error Bound (continued)

* Theorem (informal): If 3z, s such that Az = s1, perceptron makes at
most R?||z||5/s? mistakes, where R = max]||a;]|.
* Pick the “best” one to minimize ||z||5/s? and thus the number of mistakes
2
: IAIE
min _—
(z,5):Az=s1 S

Error Bound (continued)

* Theorem (informal): If 3z, s such that Az > ST, perceptron makes at
most R?||z||5/s? mistakes, where R = max]||a;]|.
* Pick the “best” one to minimize ||z||5/s? and thus the number of mistakes

2
. ||Z||2 . 1
min _——— = min)
(z,5):Az=s1 S (z,5):||z]|,=1,Az=s1 S
1

(max _)S)z
(z,5):llzll,=1,Az=s1

Error Bound (continued)

* Theorem (informal): If 3z, s such that Az > ST, perceptron makes at
most R?||z||5/s? mistakes, where R = max]||a;]|.
* Pick the “best” one to minimize ||z||5/s? and thus the number of mistakes

2
. ||Z||2 . 1
min _——— = min)
(z,5):Az=s1 S (z,5):||z]|,=1,Az=s1 S
1 1

o 2 . 2
(max. S) max min{a;, z)
(z,5):llzll,=1,Az=s1 Izll,=1

Error Bound (continued)

* Theorem (informal): If 3z, s such that Az > ST, perceptron makes at
most R?||z||5/s? mistakes, where R = max]||a;]|.
* Pick the “best” one to minimize ||z||5/s? and thus the number of mistakes

2

. ||Z||2 . 1

min _——— = min =

(z,5):Az=s1 S (z,5):||z]|,=1,Az=s1 S
1 1 1
B max s\ - 2 " 2
(S) max min{a;, z) Y

(z,5):]lzll,=1,Az=5s1 Izll,=1

y = lllr”lax1 min{a;, z) is the margin of the solution wrt the dataset.
Zll2= l

Large margin = easy, small margin = easy (draw small vs large margin)

Unigueness?

* Perceptron only guarantees finding some solution (may be many)
 Certainly not the “best” solution (draw picture)
e Support Vector Machines (SVMs) in a few lectures

What if the data is non-separable?

* The algorithm will never halt, perceptron will “cycle”
* It is not the right algorithm for data which is not linearly separable

When to terminate?

 When all points are classified correctly
* Training error stops decreasing

» “Validation error” stops decreasing

* Validation dataset: another dataset that you don’t train on, use to measure
quality of solution so far

 Some iteration or update budget is exhausted
* Weights aren’t changing much

Beyond Binary Classification: Multiclass

* Is a picture a dog, cat, bird, horse, frog?

* One-versus-all
* Train k classifiers, one for dog vs. not dog, one for cat vs. not cat, etc.
* Output prediction arg max;(z;, x) for the label of point x

* One-versus-one
* Train (’ZC) classifiers, one for dog vs. cat, one for dog vs. bird, etc.

* To classify a point, run all of these (’2‘) classifiers and output the majority vote

