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1 Perceptron

Goal

Understand the celebrated perceptron algorithm for online binary classification.

Alert 1.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 1.2: Binary classification

Given a set of n known example pairs *(xi, yi) : i = 1, 2, . . . , n+, where xi ∈ Rd and yi ∈ {±1}, we want to
learn a (binary) “classification rule” h : Rd → {±1}, so that

h(x) = y

on most unseen (future) examples (x, y). Throughout we will call xi the feature vector of the i-th example,
and yi the (binary) label of the i-th example. Together, the known example pairs *(xi, yi) : i = 1, 2, . . . , n+
are called the training set, with n being its size and d being its dimension. The unseen future example (x, y)
will be called the test example. If we have a set of test examples, together they will be called a test set.

Alert 1.3: Notations

We use boldface letters, e.g. x, for a vector of appropriate size. Subscripts are used for two purposes: (the
bold) xi denotes a vector that may have nothing to do with x, while (the non-bold) xi denotes the i-th
coordinate of x. The j-th coordinate of xi will be denoted as xji. We use 1 and 0 to denote a vector of all 1s
and 0s of appropriate size (which should be clear from context), respectively.

By default, all vectors are column vectors and we use x> to denote the transpose (i.e. a row vector) of a
column vector x.

Definition 1.4: Functions and sets are equivalent

A binary classification rule h : Rd → {±1} can be identified with a set P ⊆ Rd and its complement N = Rd\P ,
where h(x) = 1 ⇐⇒ x ∈ P .

Exercise 1.5: Multiclass rules

Let h : Rd → {1, 2, . . . , c}, where c ≥ 2 is the number of classes. How do we identify the function h with sets?

Remark 1.6: Memorization does NOT work... Or does it?

The challenge of binary classification lies in two aspects:

• on a test example (x, y), we actually only have access to x but not the label y. It is our job to predict
y, hopefully correctly most of the time.

• the test example x can be (very) different from any of the training examples {xi : i = 1, . . . , n}. So we
can not expect naive memorization to work.

Essentially, we need a (principled?) way to interpolate from the training set (where labels are known) and
hopefully generalize to the test set (where labels need to be predicted). For this to be possible, we need

• the training set to be “indicative” of what the test set look like, and/or
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• a proper baseline (competitor) to compare against.

Definition 1.7: Statistical learning

We assume the training examples (xi, yi) and the test example (x, y) are drawn independently and identically
(i.i.d.) from an unknown distribution P:

(x1, y1), . . . , (xn, yn), (x, y)
i.i.d.∼ P,

in which case we usually use capital letters (Xi, Yi) and (X, Y ) to emphasize the random nature of these
quantities. Our goal is then to find a classification rule h : Rd → {±1} so that the classification error

P(h(X) 6= Y )

is as small as possible. Put in optimization terms, we are interested in solving the following (abstract)
optimization problem:

min
h:Rd→{±1}

P(h(X) 6= Y ). (1.1)

We will shortly see that if P is known, then the classification problem (1.1) admits a closed-form solution
known as the Bayes classifier. In the more realistic case where P is not known, our hope is that the training
set {(Xi, Yi) : i = 1, . . . , n} may provide enough information about P, as least when n is sufficiently large.
This will basically be the familiar law of large numbers in (serious) disguise.

Remark 1.8: i.i.d., seriously?

Immediate objections to the i.i.d. assumption in statistical learning include (but not limit to):

• the training examples are hardly i.i.d.

• the test example may follow a different distribution than the training set, known as domain adaptation
or more restrictively as covariate shift.

Reasons to support the i.i.d. assumption include (but not limit to):

• it is a simple, clean mathematical abstraction that allows us to take a first step in understanding and
solving the binary classification problem

• for many real problems, the i.i.d. assumption is not terribly off. In fact, it is a reasonably successful
approximation

• there exist more complicated ways to alleviate the i.i.d. assumption, usually obtained by refining results
under the i.i.d. assumption.

We will take a more pragmatic viewpoint: we have to start from somewhere and the i.i.d. assumption
seems to be a good balance between what we can analyze and what we want to achieve.

Definition 1.9: Online learning

A different strategy, as opposed to statistical learning, is not to put any assumption whatsoever on the data,
but on what we want to compare against: Given a collection of existing classification rules G = {gj : j ∈ J},
we want to construct a classification rule h that is competitive against the “best” g∗ ∈ G, in terms of the
number of mistakes:

M(h) :=

n∑
i=1

Jh(xi) 6= yiK.
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Not that we do not need a test example in this setting. The “trick” is that even the best g∗ ∈ G may not
perform well on the data D = *(xi, yi) : i = 1, . . . , n+, so being competitive against the best g∗ in G may or
may not be as significant as you would have liked.

When the examples (xi, yi) come one at a time, i.e. in the online fashion, we can give ourselves even more
flexibility: we construct a sequence of classification rules {hi : i = 1, 2, . . .}, and the evaluation proceeds as
follows. Start with i = 1 and choose h1:

(I). receive xi and predict ŷi = hi(xi)

(II). receive true label yi and possibly suffer a mistake if ŷi 6= yi

(III). adjust hi to hi+1 and increment i by 1.

(We could also allow hi to depend on xi, i.e. delay the adjustment of hi−1 until receiving xi.) Note that while
we are allowed to adaptively adjust our classification rules {hi}, the competitor is more restricted: it has to
stick to some fixed rule gj ∈ G chosen well before seeing any example.

Alert 1.10: Notation

The Iverson notation JAK or sometimes also 1(A) (or even 1A) denotes the indicator function of the event
A ⊆ Rd, i.e., JAK is 1 if the event A holds and 0 otherwise.

We use |A| to denote the size (i.e. the number of elements) of a set A.

Definition 1.11: Thresholding

Often it is more convenient to learn a real-valued function f : Rd → R and then use thresholding to get a
binary-valued classification rule: h = sign(f), where say we define sign(0) = −1 (or sign(0) = 1, the actual
choice is usually immaterial).

Definition 1.12: Linear and affine functions

Perhaps the simplest multivariate function is the class of linear/affine functions. Recall that a function
f : Rd → R is linear if for all x, z ∈ Rd and α, β ∈ R:

f(αx + βz) = αf(x) + βf(z).

From the definition it follows that f(0) = 0 for any linear function f .
Similarly, a function f : Rd → R is called affine if for all x, z ∈ Rd and α ∈ R:

f(αx + (1− α)z) = αf(x) + (1− α)f(z).

Compared to the definition of linear functions, the restriction α+ β = 1 is enforced.

Exercise 1.13: Representation of linear and affine functions

Prove:

• If f : Rd → R is linear, then for any n ∈ N, any x1, . . . ,xn ∈ Rd, any α1, . . . , αn ∈ R, we have

f

(
n∑
i=1

αixi

)
=

n∑
i=1

αif(xi).

What is the counterpart for affine functions?

• A function f : Rd → R is linear iff there exists some w ∈ Rd so that f(x) = w>x.
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• A function f : Rd → R is affine iff there exists some w ∈ Rd and b ∈ R so that f(x) = w>x + b, i.e. an
affine function is a linear function translated by some constant.

Definition 1.14: Inner product

Recall the inner product (i.e. dot product) between two vectors w,x ∈ Rd is defined as

w>x =

d∑
j=1

wjxj = x>w.

The notation 〈w,x〉 is also used (especially when we want to abstract away coordinates/basis).

Algorithm 1.15: Perceptron

Combining thresholding (cf. Definition 1.11) and affine functions (cf. Definition 1.12), the celebrated percep-
tron algorithm of Rosenblatt (1958) tries to learn a classification rule

h(x) = sign(f(x)), f(x) = w>x + b,

parameterized by the weight vector w ∈ Rd and bias (threshold) b ∈ R so that

∀i, yi = h(xi) ⇐⇒ yiŷi > 0, ŷi = f(xi) = w>xi + b, (1.2)

where we have used the fact that yi ∈ {±1}.
In the following perceptron algorithm, the training examples come in the online fashion (cf. Definition 1.9),

and the algorithm updates only when it makes a “mistake” (line 3).

Algorithm: The Perceptron (Rosenblatt 1958)

Input: Dataset D = *(xi, yi) ∈ Rd × {±1} : i = 1, . . . , n+, initialization w ∈ Rd and b ∈ R, threshold
δ ≥ 0

Output: approximate solution w and b
1 for k = 1, 2, . . . do
2 receive training example index Ik ∈ {1, . . . , n} // the index Ik can be random
3 if yIk(w>xIk + b)≤ δ then
4 w← w + yIkxIk // update only after making a “mistake”
5 b← b+ yIk

We can break the for-loop if a maximum number of iterations has been reached, or if all training examples
are correctly classified in a full cycle (in which case the algorithm will longer update itself).
Rosenblatt, F. (1958). “The perceptron: A probabilistic model for information storage and organization in the brain”.

Psychological Review, vol. 65, no. 6, pp. 386–408.

Remark 1.16: “If it ain’t broke don’t fix it”

The perceptron algorithm is a perfect illustration of the good old wisdom: “If it ain’t broke, don’t fix it.”
Indeed, it maintains the same weight vector (w, b) until when a “mistake” is made, i.e. line 3 in Line 5. This
principle is often used in designing machine learning algorithms.

Remark 1.17: Padding

If we define ai = yi

[
xi
1

]
, A = [a1, . . . , an] ∈ Rp×n (where p = d + 1 stands for the number of predictors), and
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w =

[
w
b

]
, then clearly

a>i w = yi(w
>xi + b).

Thus, the perceptron problem (1.2) can be concisely reduced to the following (slightly more general) system
of linear inequalities:

Given A ∈ Rp×n find w ∈ Rp so that A>w > 0, (1.3)

where the (strict) inequality is meant elementwise, i.e. x > w ⇐⇒ ∀j, xj > wj . In the sequel we will
identify the perceptron problem (1.2) with the above system of linear equalities in (1.3).

The trick to pad the constant 1 to xi and the bias b to w so that we can deal with the pair (w, b) more
concisely is used ubiquitously in machine learning. The trick to multiply the binary label yi to xi is also often
used in binary classification problems.

Alert 1.18: Notation

We use x and w for the original vectors and x and w for the padded versions (with constant 1 and bias b
respectively). Similar, we use X and W for the original matrices and X and w for the padded versions.

We use ŷ ∈ R for a real-valued prediction and ŷ ∈ {±1} for a binary prediction, keeping in mind that
usually ŷ = sign(ŷ).

Remark 1.19: History

Historically, perceptron was the first algorithm that kicked off the entire field of artificial intelligence. Its design,
analysis, and application have had lasting impact on the machine learning field to this day. Ironically, the
failure of perceptron on nonlinear problems (to be discussed later) almost killed the entire artificial intelligence
field as well...

Exercise 1.20: Perceptron for solving (homogeneous) linear inequalities

Modify Line 5 to solve the system of (homogeneous) linear inequalities (1.3).

Alert 1.21: Existence and uniqueness of solution

For any problem you are interested in solving, the first question you should ask is:

Does there exist a solution?

If the answer is “no,” then the second question you should ask is:

If there is no solution at all, can we still “solve” the problem in certain meaningful ways?

If the answer is “yes,” then the second question you should ask is:

If there is at least one solution, then is the solution unique?

If the answer is “no,” then the third question you should ask is:

Is there any reason to prefer a certain solution?
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Definition 1.22: (Strictly) linear separable

We say that the perceptron problem (1.3) is (strictly) linearly separable if for some hence all s>0, there exists
some w such that ∀i, a>i w ≥ s > 0 (or in matrix notation A>w ≥ s1). Otherwise, we say the perceptron
problem is linearly inseparable.

This is the reason why the threshold parameter δ in Line 5 is immaterial, at least in terms of convergence
when the problem is indeed linearly separable.

Definition 1.23: Norms and Cauchy-Schwarz inequality

For any vector x ∈ Rd, its Euclidean (`2) norm (i.e., length) is defined as:

‖x‖2 :=
√
x>x =

√√√√ d∑
j=1

|xj |2.

More generally, for any p ≥ 1, we define the `p norm

‖x‖p :=
( d∑
j=1

|xj |p
)1/p

while for p =∞ we define the max norm

‖x‖∞ :=
d

max
j=1
|xj |.

Even more generally, a norm is any function ‖ · ‖ : Rd → R+ that satisfies:

• (definite) ‖x‖ = 0 ⇐⇒ x = 0

• (homogeneous) for all λ ∈ R and x ∈ Rd, ‖λx‖ = |λ|‖x‖

• (triangle inequality) for all x and z ∈ Rd:

‖x + z‖ ≤ ‖x‖+ ‖z‖.

The norm function is a convenient way to convert a vector quantity to a real number, for instance, to facilitate
numerical comparison. Part of the business in machine learning is to understand the effect of different norms
on certain learning problems, even though all norms are “formally equivalent:” for any two norms ‖ · ‖ and
||| · |||, there exist constants cd, Cd ∈ R so that ∀x ∈ Rd,

cd‖x‖ ≤ |||x||| ≤ Cd‖x‖.

The subtlety lies on the dependence of the constants cd, Cd on the dimension d: could be exponential and
could affect a learning algorithm a lot.

The dual (norm) ‖ · ‖◦ of the norm ‖ · ‖ is defined as:

‖z‖◦ := max
‖x‖=1

x>z = max
x 6=0

x>z

‖x‖
= max
‖x‖=1

|x>z| = max
x6=0

|x>z|
‖x‖

.

From the definition it follows the important inequality:

x>z ≤ |x>z| ≤ ‖x‖ · ‖z‖◦.

The Cauchy-Schwarz inequality, which will be repeatedly used throughout the course, is essentially a
self-duality property of the `2 norm:

x>z ≤ |x>z| ≤ ‖x‖2 · ‖z‖2,
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i.e., the dual norm of the `2 norm is itself. The dual norm of the `p norm is the `q norm, where

∞ ≥ p, q ≥ 1 and
1

p
+

1

q
= 1.

Exercise 1.24: Norms

Prove the following:

• for any x ∈ Rd: ‖x‖p → ‖x‖∞ as p→∞

• for any ∞ ≥ p ≥ 1, the `p norm is indeed a norm. What about p < 1?

• the dual of any norm ‖ · ‖ is indeed again a norm

• for any ∞ ≥ p ≥ q ≥ 1, ‖x‖p ≤ ‖x‖q ≤ d
1
q−

1
p ‖x‖p

• for any x, z ∈ Rd: ‖x + z‖22 + ‖x− z‖22 = 2(‖x‖22 + ‖z‖22).

Remark 1.25: Key insight

The key insight for the success of the perceptron Line 5 is the following simple inequality:

〈a,wt+1〉 = 〈a,wt + a〉 = 〈a,wt〉+ ‖a‖22 > 〈a,wt〉 .

(Why can we assume w.l.o.g. that ‖a‖22 > 0?) Therefore, if the condition 〈a,wt〉 > δ is violated, then we
perform an update which brings us strictly closer to satisfy that constraint. [The magic is that by doing so
we do not ruin the possibility of satisfying all other constraints, as we shall see.]

This particular update rule of perceptron can be justified as performing stochastic gradient descent on an
appropriate objective function, as we are going to see in a few lectures.

Theorem 1.26: Perceptron convergence theorem (Block 1962; Novikoff 1962)

Assuming the data A (see Remark 1.17) is (strictly) linearly separable and denoting wt the iterate after the
t-th update in the perceptron algorithm. Then, wt → some w∗ in finite time. If each column of A is selected
indefinitely, then A>w∗ > δ1.

Proof. Under the linearly separable assumption there exists some solution w?, i.e., A>w? ≥ s1 for some s > 0.
Then, upon making an update from wt to wt+1 (using the data instance denoted as a):

〈wt+1,w
?〉 = 〈wt,w?〉+ 〈a,w?〉 ≥ 〈wt,w?〉+ s.

Hence, by telescoping we have 〈wt,w?〉 ≥ 〈w0,w?〉 + ts, which then, using the Cauchy-Schwarz inequality,
implies ‖wt‖2 ≥ 〈w0,w

?〉+ts
‖w?‖2 . [Are we certain that ‖w?‖2 6= 0?]

On the other hand, using the fact that we make an update only when 〈a,wt〉 ≤ δ:

‖wt+1‖22 = ‖wt + a‖22 = ‖wt‖22 + 2 〈wt, a〉+ ‖a‖22 ≤ ‖wt‖22 + 2δ + ‖a‖22.

Hence, telescoping again we have ‖wt‖22 ≤ ‖w0‖22 + (2δ + ‖A‖22,∞)t, where we use the notation ‖A‖2,∞ :=
maxi ‖ai‖2.

Combine the above two (blue) inequalities: 〈w0,w
?〉+ts

‖w?‖2 ≤
√
‖w0‖22 + (2δ + ‖A‖22,∞)t, solving which gives:

t ≤
(2δ + ‖A‖22,∞)‖w?‖22 + 2s‖w?‖2‖w0‖2

s2
. (1.4)
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Thus, the perceptron algorithm performs at most a finite number of updates, meaning that wt remains
unchanged thereafter.

Typically, we start with w0 = 0 and we choose δ = 0, then the perceptron algorithm converges after at
most ‖A‖

2
2,∞‖w

?‖22
s2 updates.

Block, H. D. (1962). “The perceptron: A model for brain functioning”. Reviews of Modern Physics, vol. 34, no. 1,
pp. 123–135.

Novikoff, A. (1962). “On Convergence proofs for perceptrons”. In: Symposium on Mathematical Theory of Automata,
pp. 615–622.

Exercise 1.27: Data normalization

Suppose the data D = *(xi, yi) ∈ Rd × {±1} : i = 1, . . . , n+ is linearly separable, i.e., there exists some s > 0
and w = (w; b) such that A>w ≥ s1, where recall that ai = yi

(
xi
1

)
.

• If we scale each instance xi to λxi for some λ > 0, is the resulting data still linearly separable? Does
perceptron converge faster or slower after scaling? How does the bound (1.4) change?

• If we translate each instance xi to xi + x̄ for some x̄ ∈ Rd, is the resulting data still linearly separable?
Does perceptron converge faster or slower after translation? How does the bound (1.4) change? [Hint:
you can initialize w0 differently after the scaling.]

Remark 1.28: Optimizing the bound

As we mentioned above, (for linearly separable data) the perceptron algorithm converges after at most
‖A‖22,∞‖w

?‖22
s2 steps, if we start with w0 = 0 (and choose δ = 0). Note, however, that the “solution” w? is

introduced merely for the analysis of the perceptron algorithm; the algorithm in fact does not “see” it at all.
In other words, w? is “fictional,” hence we can tune it to optimize our bound as follows:

min
(w,s):A>w≥s1

‖w‖22
s2

= min
(w,s):‖w‖2≤1, A>w≥s1

1

s2
=

 1

max
(w,s):‖w‖2≤1, A>w≥s1

s

2

=
[ 1

max
w:‖w‖2≤1

min
i
〈ai,w〉︸ ︷︷ ︸

the margin γ2

]2
,

where we implicitly assume the denominator is positive (i.e. A is linearly separable). Therefore, the perceptron
algorithm (with w0 = 0, δ = 0) converges after at most

T = T (A) :=
maxi ‖ai‖22(

max
‖w‖2≤1

mini 〈ai,w〉
)2

steps. If we scale the data so that ‖A‖2,∞ := maxi ‖ai‖2 = 1, then we have the appealing bound:

T = T (A) =
1

γ2
2

, where γ2 = γ2(A) = max
‖w‖2≤1

min
i
〈ai,w〉≤ min

i
max
‖w‖2≤1

〈ai,w〉 = min
i
‖ai‖2 ≤ ‖A‖2,∞ = 1.

(1.5)

Intuitively, the margin parameter γ2 characterizes how “linearly separable” a dataset A is, and the perceptron
algorithm converges faster if the data is “more” linearly separable!

Remark 1.29: Uniqueness

The perceptron algorithm outputs a solution w such that Aw > δ1, but it does not seem to care which solution
to output if there are multiple ones. The iteration bound in (1.5) actually suggests a different algorithm,
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famously known as the support vector machines (SVM). The idea is simply to find the weight vector w that
attains the margin in (1.5):

max
‖w‖2≤1

min
i
〈ai,w〉 ⇐⇒ min

w:Aw≥1
‖w‖22,

where the right-hand side is the usual formula for hard-margin support vector machines (SVM), to be discussed
in a few lectures!

Theorem 1.30: Optimality of perceptron

Let n = 1/γ2 ∧ d. For any deterministic algorithm A there exists a dataset (ei, yi)
n
i=1 with margin at least γ

such that A makes at least n mistakes on it.

Proof. For any deterministic algorithm A, set yi = −A(e1, y1, . . . , ei−1, yi−1, ei). Clearly, A makes n mistakes
on the dataset (ei, yi)

n
i=1.

We need only verify the margin claim. Let w?i = yiγ (and b = 0), then yi 〈ei,w?〉 = γ. Thus, the dataset
(ei, yi)

n
i=1 has margin at least γ.

Therefore, for high dimensional problems, the perceptron algorithm achieves the optimal worst-case mistake
bound.

Alert 1.31: Notation

For two real numbers u, v ∈ R, the following standard notations will be used throughout the course:

• u ∨ v := max{u, v}: maximum of the two

• u ∧ v := min{u, v}: minimum of the two

• u+ = u ∨ 0 = max{u, 0}: positive part

• u− = max{−u, 0}: negative part

These operations extend straightforwardly in the elementwise manner to two vectors u,v ∈ Rd.

Exercise 1.32: Decomposition

Prove the following claims (note that the negative part u− is a positive number by definition):

• u+ = (−u)−

• u = u+ − u−

• |u| = u+ + u−

Theorem 1.33: Perceptron boundedness theorem (Amaldi and Hauser 2005)

Let A ∈ Rp×n be a matrix with nonzero columns, w0 ∈ Rp arbitrary, ηt ∈ [0, η̄], and define

wt+1 = wt + ηtaIt ,

where aIt is some column of A chosen such that 〈wt, aIt〉 ≤ 0. Then, for all t,

‖wt‖2 ≤ 2 max
[
‖w0‖2, η̄max

i
‖ai‖2 ×

(
(1 ∧min

i
‖ai‖2)rank(A) × κ(A)23p/2 + 1

)]
, (1.6)
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where the condition number

κ−2(A) := min{det(B>B) : B = [ai1 , ai2 , . . . , airank(A) ] is a submatrix of A with full column rank}.

Proof. We omit the somewhat lengthy proof.

The preceptron algorithm corresponds to ηt ≡ 1, in which case the boundedness claim (without the
quantitative bound (1.6)) was first established in Minsky and Papert (1988, originally published in 1969) and
Block and Levin (1970).
Minsky, Marvin L. and Seymour A. Papert (1988, originally published in 1969). Perceptron. second expanded. MIT

press.
Block, H. D. and S. A. Levin (1970). “On the boundedness of an iterative procedure for solving a system of linear

inequalities”. Proceedings of the American Mathematical Society, vol. 26, pp. 229–235.
Amaldi, Edoardo and Raphael Hauser (2005). “Boundedness Theorems for the Relaxation Method”. Mathematics of

Operations Research, vol. 30, no. 4, pp. 939–955.

Remark 1.34: Reducing multiclass to binary

We can easily adapt the perceptron algorithm to datasets with c > 2 classes, using either of the following
general reduction schemes:

• one-vs-all: For each class k, use its examples as positive and examples from all other classes as negative
we can train a perceptron with weight wk = [wk; bk]. Upon receiving a new example x, we predict
according to the “winner” of the c perceptron weight vectors (break ties arbitrarily):

ŷ = argmax
k=1,...,c

w>k x + bk.

The downside of this scheme is that when we train the k-th perceptron, the dataset is imbalanced, i.e.
we have much more negatives than positives. The upside is that we only need to train c (or c− 1 if we
set one class as the default) perceptrons.

• one-vs-one: For each pair (k, k′) of classes, we train a perceptron wk,k′ where we use examples from class
k as positive and examples from class k′ as negative. In total we train

(
c
2

)
perceptrons. Upon receiving

a new example x, we count how many times each class k is the (binary) prediction:

#{k′ : x>wk,k′ + bk,k′ > 0 or x>wk′,k + bk′,k ≤ 0}.

Of course, we take again the “winner” as our predicted class. The downside here is we have to train
O(c2) perceptrons while the upside is that each time the training set is more balanced.

Algorithm 1.35: Agmon (1954) and Motzkin and Schoenberg (1954)

More generally, to solve any (non-homogeneous) linear inequality system

A>w ≤ c, i.e., a>i w ≤ ci, i = 1, . . . , n,
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we can extend the idea of perceptron to the following projection algorithm:
Algorithm: Projection Algorithm for Linear Inequalities
Input: A ∈ Rp×n, c ∈ Rn, initialization w, relaxation parameter η ∈ (0, 2]
Output: approximate solution w

1 for t = 1, 2, . . . do
2 select an index It ∈ {1, . . . , n} // the index It can be random

3 w← (1− η)w + η

[
w − (a>Itw−cIt )

+

〈aIt ,aIt〉
aIt

]
The term within the square bracket is exactly the projection of w onto the halfspace a>Itw ≤ cIt . If we

choose η ≡ 1 then we just repeatedly project w onto each of the halfspaces. With η ≡ 2 we actually perform
reflections, which, as argued by Motzkin and Schoenberg (1954), can accelerate convergence a lot in certain
settings.
Motzkin, T. S. and I. J. Schoenberg (1954). “The Relaxation Method for Linear Inequalities”. Canadian Journal of

Mathematics, vol. 6, pp. 393–404.
Agmon, Shmuel (1954). “The Relaxation Method for Linear Inequalities”. Canadian Journal of Mathematics, vol. 6,

pp. 382–392.

Remark 1.36: Choosing the index

There are a couple of ways to choose the index It, i.e., which example we are going to deal with at iteration t:

• cyclic: It = (It−1 + 1) mod n.

• chaotic: ∃τ ≥ n so that for any t ∈ N, {1, 2, . . . , n} ⊆ {It, It+1, . . . , It+τ−1}.

• randomized: It = i with probability pi. A typical choice is pi = ‖ai‖22/
∑
ı ‖aı‖22.

• permuted: in each epoch randomly permute {1, 2, . . . , n} and then follow cyclic.

• maximal distance:
(a>Itw−cIt )

+

‖aIt‖2
= max
i=1,...,n

(a>i w−ci)+
‖ai‖2 (break ties arbitrarily).

• maximal residual: (a>Itw − cIt)
+ = max

i=1,...,n
(a>i w − ci)+ (break ties arbitrarily).

Remark 1.37: Understanding perceptron mathematically

Let us define a polyhedral cone cone(A) := {Aλ : λ ≥ 0} whose dual is [cone(A)]∗ = {w : A>w ≥ 0}.
The linear separability assumption in Definition 1.22 can be written concisely as int([cone(A)]∗) 6= ∅, but it is
known in convex analysis that the dual cone [cone(A)]∗ has nonempty interior iff int([cone(A)]∗)∩cone(A) 6= ∅,
i.e., iff there exists some λ ≥ 0 so that w = Aλ satisfies A>w > 0. Slightly perturb λ we may assume w.l.o.g.
λ is rational. Perform scaling if necessary we may even assume λ is integral. The perceptron algorithm gives
a constructive way to find such an integral λ (hence also w).
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