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Lecture 18 — Differentially Private Machine Learning
Prof. Gautam Kamath

Machine learning algorithms are frequently trained on sensitive data sets, containing private infor-
mation belonging to individuals. We will see that without proper care, machine learning systems
might leak this sensitive information. We will then discuss differential privacy, a strong notion of
data privacy which is intended to prevent disclosures of this nature. We conclude by discussing its
application to a differentially private version of stochastic gradient descent.

The Netflix Prize

One case study of data anonymization gone wrong is the Netflix Prize competition. Netflix is a very
data-driven and statistically-minded company: many of their hit TV shows are conceived based
on user data, and their fabled recommendation algorithm is tuned to optimize user engagement.
Between 2006 and 2009, they hosted a contest, challenging researchers to improve their recommen-
dation engine. The grand prize was a highly-publicized US$1,000,000, claimed by a team named
BellKor’s Pragmatic Chaos, based on matrix factorization techniques.

In order to help teams design their strategies, Netflix provided a training dataset of user data.
Each datapoint consisted of an (anonymized) user ID, movie ID, rating, and date. Netflix assured
users that the data was appropriately de-anonymized to protect individual privacy. Indeed, the
Video Privacy Protection Act of 1988 requires them to do this. One’s media consumption history is
generally considered to be sensitive or private information, as one might consume media associated
with certain minority groups (including of a political or sexual nature).

Unfortunately, Narayanan and Shmatikov demonstrated that this naive form of anonymization was
insufficient to preserve user privacy [NS08]. Their approach is illustrated in Figure 1. They took
the dataset provided by Netflix, and cross-referenced it with public information from the online
movie database IMDb, which contains hundreds of millions of movie reviews. In particular, they
tried to match users between the two datasets by finding users who gave similar ratings to a movie
at similar times. While the Netflix data was de-identified, the IMDb data was not, and a review
was associated with either the user’s name or an online pseudonym. It turns out this approach
was sufficient to re-identify many users from only a few weak matches, thus giving information on
these users’ movie watching history, which they chose not to reveal publicly. This discovery led to
a class action lawsuit being filed against Netflix, and the cancellation of a sequel competition.

This example shows that de-anonymization is insufficient to guarantee privacy, especially in the
presence of side-information.

Memorization in Neural Networks

In the previous example, we tried to output an entire dataset, which seems to be challenging
to appropriately privatize. What if we instead released some function or model of the dataset?
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Figure 1: Figure due to Arvind Narayanan, illustrating the attack in [NSO8].

As it only gives a restricted view of the dataset, perhaps this prevents it from revealing private
information? Unfortunately, this is not the case.

We discuss an investigation of Carlini et al. [CLET19]. Consider training a neural network model on
a text corpus Y (potentially containing sensitive information), and creating a generative sequence
model fy. Given a sequence z1,...,T,, the model is able to compute

n

Py(x1,... xp) = —logy Pr(zy, ..., znlfs) = > (—logy Pr(wil fo(z1, ..., 7i-1))).
=1

This quantity Py is known as the log-perplexity of the sequence. By inspecting the expression, it
can be seen that a low perplexity indicates that the sequence is assigned a high probability by the
model, and a high perplexity indicates that the sequence is assigned a low probability by the model.
For instance, a well-trained language model is likely to assign a low perplexity score to a phrase
like “Mary had a little lamb,” but a high perplexity score to “correct horse battery staple.”

The question is, what if “correct horse battery stapler” were in the training data? Would this lead
to it having a low perplexity, thus signalling that this is the case? You might think that this is not
a big deal (unless this is someone’s password) — but what if instead, the phrase “my social security
number is 078-05-1120" were assigned a low perplexity? This might reveal the SSN of an individual
in the training data. There are two core questions here:
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1. Do neural networks “memorize” “secrets” in the training data?

2. If so, is it possible to efficiently discover these secrets?



Carlini et al. [CLE*19] investigate these questions with the following experimental setup. They
add a “canary”! to the training data, which is a sensitive phrase of a particular format — we will
use the example “my social security number is 078-05-1120". The question is whether this inclusion
significantly lowers the perplexity in comparison to other semantically similar phrases, such as “my
social security number is 867-53-0900.” If so, that is an indication that the particular canary has
been memorized, and may be extractable from the final model. Note that on large datasets, the
canary may have to be added many times before the perplexity becomes low enough to be noticed.

Let us be a bit more quantitative: suppose we have a set of phrases R. For the present example,

each 7 is a digit. Imagine sorting all of these phrases in increasing order of log-perplexity according
to some model fy: the rank of the canary is its index in this list. A random element of R would
fall somewhere in the middle of the list. On the other hand, elements at the top of the list are the
best candidate secrets — we consider these to be more “exposed.” With this mindset, the exposure
of some secret r € R is logy |R| — logy rank(r). This value ranges from 0 to logy |R|, where a large
exposure corresponds to the secret being more noticeable. In particular, an exposure of log, |R|
indicates that the secret would have the lowest log-perplexity of phrases in this list.

On the bright side, it seems like extremely large models are not prone to exposing secrets in this
sense. In Figure 2, the results of an experiment on Google’s Smart Compose are displayed. Smart
Compose is an automatic sentence completion algorithm employed in Gmail, and is trained on
billions of word sequences. Even when the canary is inserted thousands of times, the exposure
remains comparatively low — |R| used in this experiment is on the order of 10'2, so an exposure of
> 40 is needed for extraction, whereas it only reaches values of 10 after 10,000 insertions. On the
other hand, Figure 3 illustrates a much smaller example, with a training dataset of size roughly
100, 000, and using the social security number example given above. As we can see, with only four
insertions of the canary, its exposure passes log, 107, at which point it can easily be extracted.

In the paper, the authors also give efficient methods of extracting exposed secrets. Naively, one
would have to try all possible sets of phrases and determine their perplexity. A more efficient
approach is possible using a Dijkstra’s algorithm style method.

Finally, the authors discuss how to mitigate such memorization and exposure. Interestingly, stan-
dard techniques to avoid overfitting in machine learning are ineffective, including dropout and
regularization. Differential privacy appears to be the only effective approach.

Differential Privacy

In security and privacy, it is important to be precise about the precise setting in which we are
working. We now define the setting for differential privacy, sometimes called central differential
privacy or the trusted curator model. We imagine there are n individuals, X7 through X,,, who each
have their own datapoint. They send this point to a “trusted curator” — all individuals trust this
curator with their raw datapoint, but no one else. Given their data, the curator runs an algorithm
M, and publicly outputs the result of this computation. Differential privacy is a property of this
algorithm M ? saying that no individual’s data has a large impact on the output of the algorithm.

LA reference to the concept of a canary in a coal mine.
2In differential privacy lingo, an algorithm is sometimes (confusingly) called a “mechanism.”
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Figure 2: Figure from [CLET19]. Even with 10000 insertions, the canary has relatively low exposure
in the Google Smart Compose model.

More formally, suppose we have an algorithm M : X™ — ). Consider any two datasets X, X' € X"
which differ in exactly one entry. We call these neighbouring datasets, and sometimes denote this
by X ~ X’'. We say that M is (g, §)-differentially private ((g,9)-DP) if, for all neighbouring X, X',
and all T C Y, we have

Pr[M(X) e T) < € Pr[M(X') € T] + 6,

where the randomness is over the choices made by M.

Differential privacy was defined by Dwork, McSherry, Nissim, and Smith in their seminal paper in
2006 [DMNS06] (with § = 0, the general version here is from [DKM'06]). It is now widely accepted
as a strong and rigorous notion of data privacy. It has received acclaim in theory, winning the 2017
Godel Prize, and the 2016 TCC Test-of-Time Award. At the same time, it has now seen adoption
in practice at many organizations, including Apple [Dif17], Google [EPK14], Microsoft [DKY17],
the US Census Bureau for the 2020 US Census [DLS*17], and much more.

Differential Privacy is an unusual sounding definition the first time you see it, so some discussion
is in order.

e Differential privacy is quantitative in nature. A small ¢ corresponds to strong privacy, de-
grading as € increases.

e ¢ should be thought of as a small-ish constant. Anything between (say) 0.1 and 5 might be a
reasonable level privacy guarantee (smaller corresponds to stronger privacy), and you should
be skeptical of claims significantly outside this range.

e 0 should be much, much smaller, smaller than 1/n. This is because very trivial but obvi-
ously non-private algorithms have § = 1/n. Namely, just choosing a random individual and
outputting their data.
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Figure 3: Figure from [CLET19]. In a smaller example, the canary has very high exposure (and is
recoverable) with only a few insertions.

e This is a worst-case guarantee, over all neighbouring datasets X and X’. Even if we expect our
data to be randomly generated (and some realizations are incredibly unlikely), we still require
privacy for all possible datasets nonetheless. While there do exist some notions of average-case
privacy, these should be approached with caution — Steinke and Ullman write a series of posts
which warn about the pitfalls of average-case notions of differential privacy [SU20a, SU20b].

e In words, the definition bounds the multiplicative increase (incurred by changing a single
point in the dataset) in the probability of M’s output satisfying any event.

e The use of a multiplicative e® in the probability might seem unnatural. For small €, a Taylor
expansion allows us to treat this as ~ (1 4+ ¢). The given definition is convenient because
of the fact that e°! - €2 = €17°2_ which is useful when we examine the property of “group
privacy” later.

e While the definition may look asymmetric, it is not: one can simply swap the role of X and
X'

e Convince yourself that any non-trivial (i.e., one that is not independent of the dataset) dif-
ferentially private algorithm must be randomized.

Let’s take a step back: what does differential privacy mean? Simply repeating the definition:
differential privacy says that, the probability of any event is comparable in the cases when an
individual does or does not include their data in the dataset. This has a number of implications of
what differential privacy does and does not ensure.

First, it prevents many of the types of attacks we have seen before. The linkage-style attacks that
we have observed are essentially ruled out — if such an attack were effective with your data in the



dataset, it would be almost as effective without. This holds true for existing auxiliary datasets,
as well as any future data releases as well. It also prevents reconstruction attacks, in some sense
“matching” the bounds shown in the Dinur-Nissim attacks [DNO03], as we will quantify in a later
lecture. In fact, it protects against arbitrary risks, which can be reasoned about by simply revisiting
the fact that any outcome is comparably likely whether or not the individual’s data was actually
included.

Differential privacy does mot prevent you from making inferences about individuals. Stated al-
ternatively: differential privacy does not prevent statistics and machine learning. Consider the
folklore “Smoking Causes Cancer” example. Suppose an individual who smokes cigarettes is weigh-
ing their options in choosing to participate in a medical study, which examines whether smoking
causes cancer. They know that a positive result to this study would be detrimental to them, as it
would cause their insurance premiums to rise. They also know that the study is being performed
using differentially privately, so they choose to participate, and they know their privacy will be
respected. Unfortunately for them, the study reveals that smoking does cause cancer! This is a
privacy violation, right? No: differential privacy ensures that the outcome of the study would not
be significantly impacted by their participation. In other words, whether they participated or not,
the result was going to come out anyway. For more discussion of the compatibility of privacy and
learning, see [McS16].

Differential privacy is also not suitable for the case where the goal is to identify a specific individual,
and this is antithetical to the definition. As a timely example, despite the clamoring for privacy-
preserving solutions for tracking the spread of COVID-19, it is not immediately clear how one could
use differential privacy to facilitate individual-level contact tracing. This would seem to require
information about where a specific individual has been, and which particular individuals they have
interacted with. On the other hand, it might be possible to facilitate aggregate-level tracking, say if
many people who tested positive all attended the same event. In this vein, there is some interesting
work done by Google on DP analysis of location traces, to see which types of locations people spend
more and less time at since COVID-19 struck [ABC*20].

The definition of differential privacy is information theoretic in nature. That is, an adversary
with unlimited amounts of computational power and auxiliary information is still unable to get an
advantage. This is in contrast to cryptography, which typically focuses on computationally bounded
adversaries. There has been some work on models of differential privacy where the adversary is
computational bounded, see, e.g., [BNOOS|.

Properties of Approximate Differential Privacy

One of the reasons that differential privacy is so popular is that it has a number of convenient
properties. We simply state and discuss them, one can refer to [DR14, Vad17] for proofs.

Post-Processing

One convenient fact about differentially private algorithms is that once a quantity is privatized, it
can’t be “un-privatized,” if the data is not used again. This is called closure under post-processing;:
if an algorithm is (g, 6)-DP, then any post-processing is also (g, §)-DP.



Theorem 1. Let M : X" — Y be (g, 9)-differentially private, and let F : Y — Z be an arbitrary
randomized mapping. Then F o M is (g,0)-differentially private.

Group Privacy

So far, we’'ve discussed differential privacy with respect to neighbouring datasets — ones which
differ in exactly one entry. But one might wonder about datasets which differ in multiple entries.
The definition of differential privacy allows for the guarantee to decay gracefully as the distance is
increased. This is called group privacy.

Theorem 2. Let M : X" — Y be an (g,0)-differentially private algorithm. Suppose X and X'
are two datasets which differ in exactly k positions. Then for all T C Y, we have

Pr[M(X) € T| < exp(ke) Pr[M(X') € T] + kelk=1%s.

Composition

As a final but important property, we discuss composition of differentially private algorithms.
Suppose you ran k differentially private algorithms on the same dataset, and released all of their
results — how private is this as a whole?

There are two composition theorems, one is the basic composition theorem which states that the
e’s and d’s add up to give a final privacy guarantee. If all the ’s are the same, then running k
algorithms degrades the privacy parameter by a factor of k.

Theorem 3. Suppose M = (M, ..., My) is a sequence of algorithms, where M; is (g, 0;)-differentially

private, and the M;’s are potentially chosen sequentially and adaptively.> Then M is (Zle €is Zle 0i)-
differentially private.

However, there is also an advanced composition theorem which says that we only need to pay a
factor of Vk.

Theorem 4. Suppose M = (M, ..., My) is a sequence of algorithms, where M; is (g, 0)-differentially
private, and the M;’s are potentially chosen sequentially and adaptively. Then for any & > 0, M
is (0(eVklog(1/8")), ké + &8')-differentially private.

Gaussian Mechanism

The main way we make an algorithm differentially private is by adding noise. One of the main tools
is the Gaussian mechanism. As the name suggests, this privatizes a statistic by adding Gaussian
noise. Before we get to that, we define the sensitivity of a function.

Definition 5. Let f : X™ — RF. The ly-sensitivity of f is

Ay = e | £(0) = (X,

3While the algorithms themselves may be sequentially and adaptively chosen, the privacy parameters may not be
— see [RRUV16] for more discussion.



where X and X' are neighbouring databases.

The Gaussian mechanism is as follows:

Definition 6. Let f : X™ — R*. The Gaussian mechanism is defined as
MX)=f(X)+M,...,Y%),
where the Y; are independent N(0,21n(1.25/6)A3/e?) random variables.

Note that we can also write this using the multivariate Gaussian as f(X) + Y, where ¥V ~
N(0,21n(1.25/8)A2%/e% - I). This algorithm is (e, §)-DP.

Differentially Private Stochastic Gradient Descent

The current prevailing approach for differentially private machine learning is gradient perturbation,
in which we perform a noisy form of gradient descent. This approach was first suggested by [WM10]
and later by [SCS13], but it was most developed by Bassily, Smith, and Thakurta [BST14] (whose
work we will be covering today). A work by Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar,
and Zhang [ACG™16] develops this method, making it more practical, and applying it to neural
networks.

Before we talk about noisy gradient descent, we first recall stochastic gradient descent.

1. Select a random minibatch B of points from the dataset,
2. Compute the average gradient: ﬁ Z(%yi)eB V(O iy yi),

3. Take a step in the negative direction of the gradient.

The plan will be as follows: we would like to noise the gradient using the Gaussian mechanism as
described above. However, the gradients could be arbitrarily large, and thus we must clip them.
Namely, if a gradient has norm larger than some threshold C', we rescale it so that its norm is
exactly C'. This will lose some information from the gradients, but it seems to work well enough in
practice.

1. Sample a “lot” of points of (expected) size L by selecting each point to be in the lot indepen-
dently with probability L/n,

2. For each point (z;,y;) in the lot, compute the gradient of ¢(6;, z;,y;) and “clip” it to have ¢y
norm at most C.

3. Average these clipped gradients and add Gaussian noise.

4. Take a step in the negative direction of the resulting vector.
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Figure 4: Figure from [ACG™16], showing the difference between using the improved analysis
provided in their paper (called moments accountant) versus advanced composition.

This will result in each individual step of the algorithm being (g, ¢)-differentially private. Fortu-
nately, properties such as composition of differential privacy allow us to reason about multiple steps
of the algorithm. Specifically, running k steps of this algorithm will result in an overall algorithm
which is (informally speaking) differentially private with parameter evk. This can be further im-
proved by the fact that the first line subsamples each point with probability L/n, due to a property
known as privacy amplification by subsampling (which we will not cover here). This will “boost”
the privacy guarantee to roughly ev/kL /n. Even with all this work, the privacy guarantees would
still be very weak and lossy, which is why more advanced methods known as moments accountant
and Rényi differential privacy have been introduced [ACG*16, WBK19, MTZ19, Mir17]. We will
not discuss these, but Figure 4 demonstrates the significant advantages that they afford.

The results are passable, but not phenomenal. For instance, one common benchmark is image
classification on the MNIST dataset. One state-of-the-art result (based on DPSGD, but with
additional tuning) gets 98.1% accuracy with (1.2,107%)-DP [TB21], whereas the best non-private
methods get closer to 99.8% accuracy. A more challenging task is image classification on the CIFAR-
10 dataset. Non-privately, methods are able to achieve 99.7% accuracy, while with (3,1073)-DP,
we are able to achieve only 69.3% accuracy [TB21]. Neither the privacy guarantee or the accuracy
guarantee are very compelling at the moment. There is clearly a lot of work to be done to improve
the state of differentially private machine learning.

While DPSGD acts as a drop in replacement for SGD, there are many qualitative differences in the
differentially private setting. We discuss some of them here.

One common complaint is that DPSGD is much slower than traditional SGD. The reason is that
DPSGD requires one to clip each individual gradient in order to limit the sensitivity. Most modern
machine learning frameworks are not built for this procedure, having methods which are optimized
to use the GPU to compute the gradient over an entire mini-batch at once in parallel. The require-



ment of per-example gradients diverges from this standard, and the naive method of computing
them would necessitate processing all points sequentially, thus losing all speedup granted by paral-
lel processing on GPUs. As such, alternative algorithms for obtaining per-example gradients have
been proposed [Gool5, RMT19], and sometimes alternative frameworks may be more efficient due
to their low-level features, notably the recently-introduced framework JAX [SVK20].

As mentioned before, the ReLU is the most popular activation function in non-private machine
learning, due to several convenient properties such as the ability to avoid “vanishing gradients”
(an issue we will not get into here). However, in the differentially private setting, it appears that
the tanh function (considered obsolete in the non-private setting) yields significant performance
improvements [PTS*20]. This is one example showing that there can be benefits associated with
modifying a network’s architecture for the differentially private setting. On a similar note, non-
private neural networks have grown exceptionally large, with the number of parameters growing into
the hundreds of billions. This is because the size of a model is associated with higher “capacity,”
meaning that it can learn more functions. However, DPSGD requires the addition of Gaussian
noise of magnitude proportional to the square root of the number of parameters. Thus, if we tried
to run DPSGD on such a large model, our noise would drown out all signal. One must carefully
choose the network architecture with this in mind — too small and the network wouldn’t be able to
represent the function, and too large and the noise would be overwhelming.

Hyperparameter tuning is a common challenge in machine learning tasks, and even more are intro-
duced in the differentially private setting. For instance, how does one choose the learning rate, the
lot size, the clipping norm, or the number of epochs? The canonical way to do this (non-privately)
is to run a number of analyses on the training data with various hyperparameter settings, and
choose the one which performs best on a validation set. Doing this in the differentially private
setting would incur a cost in our privacy budget with every run, a cost which is currently omitted
in most DP machine learning papers. This can be seen as pushing the methods to their limits,
though they do not correspond to true privacy guarantees. Some methods have been proposed for
hyperparameter optimization in a differentially private manner [LT19]. Another approach is to use
public (non-sensitive) data that may have come from the same distribution as the private dataset.
One can thus perform hyperparameter tuning on the public data, which will hopefully be suitable
for the private data. An example of this is presented in [ACG'16], in which they treat the large
CIFAR-100 dataset as public, and use this to train a neural network. They then freeze the majority
of parameters in the model, and train the remainder privately on the sensitive CIFAR-10 dataset,
achieving much better accuracy on the test set than without the CIFAR-100 training.
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