
Attention
Gautam Kamath



Sequence Modelling

• Suppose we have a sequence of length 𝑛, each element in the 
sequence is of dimension 𝑑

• Previous solution: RNNs
• Computing each hidden state is 𝑂 𝑑2 , so overall 𝑂 𝑛𝑑2 computation

• Long chains make it hard to deal with long-range dependencies

• Optimization woes like vanishing and exploding gradients

• Many training steps

• Sequential nature makes it hard to parallelize

• The attention mechanism solves most of these
• …though computation increases for long sequences



Attention Mechanism/Layer

• Takes three inputs: set of queries 𝑞𝑗, keys 𝑘𝑖, and values 𝑣𝑖
• Same number of keys and values, number of queries may differ

• For a given query 𝑞𝑗, tries to mimic retrieval lookup of value 𝑣𝑖
corresponding to key 𝑘𝑖 which “matches” query

• attention 𝑞, 𝑘, Ԧ𝑣 = σ𝑖 similarity 𝑞, 𝑘𝑖 × 𝑣𝑖

• (Draw: layer 1 is 𝑞 and 𝑘𝑖 → 𝑠𝑖, layer 2 is softmax to get 𝑎𝑖’s, layer 3 is 
multiplication and sum with 𝑎𝑖 and 𝑣𝑖 to produce output)



Similarity?

• What is similarity(𝑞, 𝑘)?

• Dot product: ⟨𝑞, 𝑘⟩

• Scaled dot product: 
𝑞,𝑘

𝑑
• 𝑞 and 𝑘 are of dimension 𝑑

• General dot product: ⟨𝐴𝑞, 𝐵𝑘⟩
• 𝐴 and 𝐵 are matrices of learnable parameters



Attention for Sets

• Since similarity between vectors 𝑞 and 𝑘 is ⟨𝑞, 𝑘⟩, how do we 
compute similarity between sets of vectors 𝑄 and 𝐾?

• Matrix multiplication: 𝑄𝐾𝑇

• Attention mechanism looks like →

• Self-attention: when 𝑄 = 𝐾 = 𝑉

• (Draw example with “word” matrices attn)

• softmax(𝑉𝑉𝑇): each row becomes distribution

• softmax 𝑉𝑉𝑇 𝑉: replace rows with weighted sums



Visualizing Attention



Attention vs RNN for sequences

• Sequence of 𝑛 vectors, each 𝑑-dimensional

• Computation: 𝑂(𝑛2𝑑)
• 𝑉𝑉𝑇 computation is 𝑂(𝑛2𝑑)

• Compare with RNNs: 𝑂 𝑛𝑑2

• Advantage of attention: maximum sequence length is 𝑂(1)
• No long dependence chains for long sequences



Multi-head attention

• Precede Attention with linear layer
• General dot product

• Multiple “heads” in parallel
• Similar to multiple filters in CNNs



Transformer Architecture

• Encoder-decoder structure

• Other layers: 

• Input embedding
• Convert one-hot vectors to a denser representation

• Positional encoding
• Encode position of token in sequence

• E.g., dog is behind the cat vs cat is behind the dog

• Layer normalization



Masked (Self-)Attention

• Say you’re doing next word prediction… prevent “cheating” by looking 
at the next word!

• Self-attention: softmax 𝑉𝑉𝑇 𝑉

• Masked self-attention: softmax mask(𝑉𝑉𝑇) 𝑉

• 𝑚𝑎𝑠𝑘 𝑀 𝑖𝑗 = −∞ if 𝑖 < 𝑗, 𝑀𝑖𝑗 otherwise



Results



GPT-1
• Transformer decoder arch

• Two stage training

1. Unsupervised pre-training
• Lots of (unlabeled) text used
• Objective: next word prediction

2. Supervised fine-tuning
• Smaller amount of labeled text

• Use a different output at end for 
each task

• Result of 1. can be downloaded 
and fine-tuned for multiple 
different tasks 



BERT

• Transformer encoder arch

• Pre-training: masked word 
prediction

• Input: I took my [mask] for a 
walk

• Answer: dog



GPT-2

• 10x bigger than GPT-1

• Bigger models are more 
powerful



GPT-3 – even bigger



Scale Helps



Try it yourself!

• https://beta.openai.com/playground


