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Sequence Modelling

e Suppose we have a sequence of length n, each element in the
sequence is of dimension d

* Previous solution: RNNs
» Computing each hidden state is 0(d?), so overall O(nd?) computation
* Long chains make it hard to deal with long-range dependencies
Optimization woes like vanishing and exploding gradients
Many training steps
Sequential nature makes it hard to parallelize

* The attention mechanism solves most of these
 ...though computation increases for long sequences



Attention Mechanism/Layer

* Takes three inputs: set of queries q;, keys k;, and values v;
 Same number of keys and values, number of queries may differ

* For a given query q;, tries to mimic retrieval lookup of value v;
corresponding to key k; which “matches” query

. attention(q, k, 17) = ),; similarity(q, k;) X v;

* (Draw: layer 1is g and k; — s;, layer 2 is softmax to get a;’s, layer 3 is
multiplication and sum with a; and v; to produce output)



Similarity?

* What is similarity(q, k)?
* Dot product: (g, k)

Scaled dot product: 75

* g and k are of dimension d

* General dot product: (Aq, Bk)

* A and B are matrices of learnable parameters



Attention for Sets

* Since similarity between vectors g and k is (g, k), how do we
compute similarity between sets of vectors Q and K?

 Matrix multiplication: QKT

Scaled Dot-Product Attention

* Attention mechanism looks like — '
* Self-attention: when Q = K =V e
e (Draw example with “word” matrices attn) -
e softmax(VV"): each row becomes distribution ——
e softmax(VVT)V: replace rows with weighted sums :j,lqe|
t 1

Q KV



Visualizing Attention
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Attention vs RNN for sequences

* Sequence of n vectors, each d-dimensional
 Computation: 0(n?d)

e VVT computation is 0(n*d)
e Compare with RNNs: 0(nd?)

* Advantage of attention: maximum sequence length is O (1)
* No long dependence chains for long sequences



Multi-head attention

* Precede Attention with linear layer

* General dot product

* Multiple “heads” in parallel
* Similar to multiple filters in CNNs

Multi-Head Attention

|

Linear

1

Concat

y 1

I &
Scaled Dot-Product :
Attention




Qutput
Probabilities

f

| Softmax |

Transformer Architecture

|  Linear |

e ~
| Add & Norm |~

* Encoder-decoder structure Feed
—
* Other layers: - N | | (a2 Nom
: g I8 em Mult-Head
* Input embeddlng FFL-?ef:i{j Attention .
orwar }. } J) bod

* Convert one-hot vectors to a denser representation . ‘

| Add & Norm  Jee=

oy . . N
* Positional encoding = =
* Encode position of token in sequence Attention Altention
* E.g., dogis behind the cat vs cat is behind the dog — ) L ——
. . FJ iti | "
* Layer normalization encoding QO &~ Erooing
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)



Masked (Self-)Attention

* Say you’re doing next word prediction... prevent “cheating” by looking
at the next word!

e Self-attention: softmax(VV 1)V
« Masked self-attention: softmax(mask(VV 1))V
* mask(M);; = —ifi < j, M;; otherwise



Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

M BLEU Training Cost (FLOPs)
odel EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 -10%°
GNMT + RL [38] 24.6 39.92 2.3-10Y  1.4.10%
ConvS2S [9] 25.16  40.46 9.6 -10% 1.5.102%
MoE [32] 26.03  40.56 2.0-10"* 1.2.102%°
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 -10%°
GNMT + RL Ensemble [38] 2630  41.16 1.8-10%°  1.1-10%*!
ConvS2S Ensemble [9] 2636  41.29 .10 1.2
Transformer (base model) 27.3 38.1 3.3-10'8
Transformer (big) 28.4 41.8 2.3-1019




GPT-1

* Transformer decoder arch
* Two stage training

1. Unsupervised pre-training
* Lots of (unlabeled) text used
* Objective: next word prediction

2. Supervised fine-tuning
 Smaller amount of labeled text

* Use a different output at end for
each task

e Result of 1. can be downloaded
and fine-tuned for multiple
different tasks
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BERT

* Transformer encoder arch
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GPT-2

* 10x bigger than GPT-1

* Bigger models are more
powerful

3.2. Children’s Book Test

Accuracy
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GPT-3 —even bigger

Zerg-shot

The model predicts the answer given only a natural language
description of the task. Mo gradient updates are performed.

Translate English to French: task description

chegse == pramygt

One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: A%k e

sea otter == loutre de mer Example

cheese == rompt
Faw-shot

In addition to the task description, the model sees a few
examples of the task, Mo gradient updates are perfermed.

Translate English to French: tazk description
ses otter => loutre de mer examples
peppermint == menthe poivree

plush girafe == girafe peluche

cheege == prompt

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example lasks.

gea otter == lowtre de mer example &7
peppermint == menthe poivrée exgmple 82
plush giraffe == girafe peluche exgmple &N
cheege == prompl



Scale Helps
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Try it yourself!

* https://beta.openai.com/playground



