Attention

Gautam Kamath

Sequence Modelling

- Suppose we have a sequence of length *n*, each element in the sequence is of dimension *d*
- Previous solution: RNNs
 - Computing each hidden state is $O(d^2)$, so overall $O(nd^2)$ computation
 - Long chains make it hard to deal with long-range dependencies
 - Optimization woes like vanishing and exploding gradients
 - Many training steps
 - Sequential nature makes it hard to parallelize
- The attention mechanism solves most of these
 - ...though computation increases for long sequences

Attention Mechanism/Layer

- Takes three inputs: set of queries q_i , keys k_i , and values v_i
 - Same number of keys and values, number of queries may differ
- For a given query q_j , tries to mimic retrieval lookup of value v_i corresponding to key k_i which "matches" query
- attention $(q, \vec{k}, \vec{v}) = \sum_i \text{similarity}(q, k_i) \times v_i$
- (Draw: layer 1 is q and $k_i \rightarrow s_i$, layer 2 is softmax to get a_i 's, layer 3 is multiplication and sum with a_i and v_i to produce output)

Similarity?

- What is similarity(q, k)?
- Dot product: $\langle q, k \rangle$
- Scaled dot product: $\frac{\langle q,k \rangle}{\sqrt{d}}$
 - q and k are of dimension d
- General dot product: (Aq, Bk)
 - A and B are matrices of learnable parameters

Attention for Sets

- Since similarity between vectors q and k is $\langle q, k \rangle$, how do we compute similarity between *sets* of vectors Q and K?
- Matrix multiplication: QK^T
- Attention mechanism looks like \rightarrow
- Self-attention: when Q = K = V
- (Draw example with "word" matrices attn)
- softmax(VV^T): each row becomes distribution
- softmax $(VV^T)V$: replace rows with weighted sums

Scaled Dot-Product Attention

Visualizing Attention

Attention vs RNN for sequences

- Sequence of n vectors, each d-dimensional
- Computation: $O(n^2d)$
 - VV^T computation is $O(n^2d)$
- Compare with RNNs: $O(nd^2)$
- Advantage of attention: maximum sequence length is O(1)
 - No long dependence chains for long sequences

Multi-head attention

- Precede Attention with linear layer
 - General dot product
- Multiple "heads" in parallel
 - Similar to multiple filters in CNNs

Transformer Architecture

- Encoder-decoder structure
- Other layers:
- Input embedding
 - Convert one-hot vectors to a denser representation
- Positional encoding
 - Encode position of token in sequence
 - E.g., dog is behind the cat vs cat is behind the dog
- Layer normalization

Masked (Self-)Attention

- Say you're doing next word prediction... prevent "cheating" by looking at the next word!
- Self-attention: $softmax(VV^T)V$
- Masked self-attention: $softmax(mask(VV^T))V$
- $mask(M)_{ij} = -\infty$ if i < j, M_{ij} otherwise

Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0\cdot10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3\cdot10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot10^{20}$
MoE [32]	26.03	40.56	$2.0\cdot10^{19}$	$1.2\cdot10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot10^{20}$	$1.1\cdot10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot10^{18}$	
Transformer (big)	28.4	41.8	$2.3\cdot10^{19}$	

GPT-1

- Transformer decoder arch
- Two stage training
- 1. Unsupervised pre-training
 - Lots of (unlabeled) text used
 - Objective: next word prediction
- 2. Supervised fine-tuning
 - Smaller amount of labeled text
- Use a different output at end for each task
- Result of 1. can be downloaded and fine-tuned for multiple different tasks

BERT

- Transformer encoder arch
- Pre-training: masked word prediction
- Input: I took my [mask] for a walk
- Answer: dog

GPT-2

- 10x bigger than GPT-1
- Bigger models are more powerful

3.2. Children's Book Test

GPT-3 – even bigger

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

Translate English to French:	- task description
cheese =>	← prompt

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Translate English to French:	- task description
sea otter => loutre de mer	example
cheese =>	← prompt

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

Scale Helps

Try it yourself!

https://beta.openai.com/playground