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Motivation

* Most methods we’ve looked at so far are linear, which is limiting
* (Draw classifier with circle boundary)

* Consider the feature map (x{,x,) = (x%,x2)

 (Draw points after the mapping)

e Data which is not linearly separable becomes linearly separable in the
new space

* (Draw XOR example)

e Consider feature map ¢: R? — R3 where ¢(x) = [xq, x5, x1%5]
* Then sign(x;x,) works

* (Fail at drawing this in 3D)



Feature Maps

* A feature map ¢ maps a feature vector x to some higher-dimensional
space

e Simple example: the padding trick

* ¢(x) = [x, 1] and parameter vector w = [p, b], both € R¢*+1
* Before: classifiers like (x,p) > 0

* After: classifiers like (¢p(x),w) = {(x,p) + b >0



Quadratic Feature Maps

* Instead of functions x”p + b > 0, consider xTQx + V2x"p + b > 0
« Q eR¥ peRYLbER
* Trust me on the V2 for now

» Note that xTQx = ¥ (x;x;) Q;;

e A dot product between “flattenings” of xx' and Q, name x—xT) and (5 (draw)
* Take ¢ (x) = [x_xT), \V2x, 1] and w = [0, p, b], both in R4’ +d+1

* Then (¢ (x),w) & xTOx +V2xTp + b



Feature Maps

e Generally: instead of taking dot product of feature vector with
parameter vector, map feature vector and take dot product with new
parameter vector

- With quadratic feature map ¢: R4 » R2“+4+1 computations go from
0(d) to 0(d?)

* What if we map to a very high-dimensional space?

 What if we have an infinite-dimensional feature map ¢: R - R®?
c Eg,(d=1)¢p(x) =[1,x,x2% x3,x*% ..]
* Naively, can’t be computed in finite time. What do?



Using Feature Maps in SVM (Dual)
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Using Feature Maps in SVM (Dual)
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* Focus on quadratic ¢(x) = [W, V2x, 1] for now

* How to compute (¢(x), p(x"))?
e Naively: compute ¢(x), compute ¢p(x"), take their dot product. 0(d?) time
* BUT! We don’t care about ¢p(x) or ¢p(x"), only their dot product (¢(x), p(x"))



Quadratic Feature Map Kernel

* How to compute (¢ (x), p(x))?
(B (), p(x) = <xxT X x’T> + (VZx,VZx') + (1,1)

T i iT\ — _ _
<XX y X X >—2XX]XLX] —ZXXX] j ZXX (ZX] ]> (XX

(qb(x),qb(x’)) (x, X')Z + 2(x,x") + | = (x, x") + 1)?
* Note that ({x, x') + 1)? can be computed in O(d) time, instead of 0(d?)!

e k(x,x") = ({x,x') + 1)? is a kernel




Kernels

* k:R% x R% — Riis a kernel if there exists a feature map ¢: R - R™

such that k(x, x") = (d(x), p(x"))

* ¢ (x) may be expensive (or impossible) to compute, but the kernel k
may be tractable

« Compare 0(d?) for quadratic feature map versus 0(d) for kernel
* Polynomial kernel of degree t: k(x,x") = ({x,x') + 1)}
* Gaussian/radial basis function: k(x,x") = exp(|lx — x’||5)



What makes a valid Kernel?

* First off, if you can construct a corresponding feature map ¢
* This also implies the following alternate interpretation
* Let x4, ..., x,, be an arbitrary dataset
* Let K € R™*™ be a matrix where K;; = k(x;, x;)
* K is symmetric (K;; = Kj;) and positive semidefinite
« vIKv > 0 for all vectors v € R"

* The existence of a feature map implies these properties due to the
Gram matrix (draw)



Using Kernels in SVM (Dual)

Solve
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- K;j = (qb(x(i)),qb(x(f))) — k(x(i),x(j))
* How to classify new point?
W= Za(i)y(i)qb(x(i)), but can’t compute gb(xi)
+ sign((w, p(x))) = sign({(TaWyPp(x®), p(x))) = sign(TaPyDk(x®, x))
* SVM (Linear Kernel): O(nd) train time, O(d) test time
* General Kernel: 0(n?d) train time, O0(nd) test time



