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Bagging



Bagging: Bootstrap Aggregating

* Bootstrap sampling + aggregation
 Example: estimate u given Xy, ..., X,, ~ N(u, 0%)
* Simple solution: use empirical mean i = %in

~ A 1 1 1 2
* Note E|ji] = u, Var|ji] = Var [;ZXL'] = ﬁVar[ZXi] =—=-n: Var[X;] = =.

n

e Variance may be very large...

* If we have Bn points from N(u, %), can form §; = {Xy, ..., X, }, Sz =
Xnt1 o Xandr o, Sp = (X(a—vns1 - Xpn)

N 1 A 1 A
o ‘Ll(J) — ;ZZES]'Z and ‘u(avg) — EZ]E[B] ‘u(])



Bootstrap Sampling

* Averaging over B independent datasets reduces variance by factor B
* But needs B times more data...

* |dea: cheat and just reuse parts of the same dataset!
* Not independent, but still seems to work

* Bootstrap sampling = sampling with replacement



Bootstrap Example

* Given dataset of size n, create B datasets of size n, where each is
constructed by drawing n samples (with replacement) from original

* Example: Given dataset X, X,, X3, X4, X5
5 = {Xg;X4;X1,X1,X4},SZ = {X5’X5'X3:X1:X2} — ...

o Again’ use ﬂ(.’) — lZZESjZ and ‘[I(avg) Z ‘u(])

n
. E[ﬁ(avg)] = u, Var [%Zje[B]ﬁ(j)] —7?

e Can’t compute variance as before, since we lost independence
* Still works in practice by reducing variance anyway!



Bagging in ML

* Some methods are inherently high variance

* Decision trees
* Learn decision tree on 2 halves of the same dataset — (very?) different trees

e Use bootstrap aggregating to reduce variance
1. Bootstrap sample B datasets of size n

2. Run some learning algorithm on each, get classifiers f(l), ...,f(B)
3. Aggregate f(D, ..., f(B)

* How? Regression f(x) = %Zf(j) (x).

« Classification f(x) = majority vote of f ) (x)




Random Forests

* Bagging on decision trees
e Twist to add randomness/make bootstrap samples “look” more independent

 Standard decision trees: When choosing which feature to split on,
look at all d features and pick the “best” one

* Downside: if one feature is very informative, will be used in all B datasets

 Random forests: When choosing which feature to split on, look at a
random subsample of m « d features and pick the “best” one

* Say,m = Vd
* Resample for each split



Random Forests
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Boosting



Boosting

* Given several “weak learners,” can we combine them into a “strong
learner”?

* Weak learner: “55% accurate” (slightly better than random guess)
* Focus on binary classification today

 Strong learner: “90%+ accurate” (a good classifier)

* Iterative process. Train a classifier. “Downweight” points it gets right,
“upweight” points it gets wrong. Train classifier on new weighted
dataset (draw)

* Bit of a diversion until we get to that...



“Online Learning with Experts”

* Example: Horse racing, with n horses and T races. How to choose
which horse to bet on? How to update your bet after each race?

* More general setting, T rounds of the following:

1. Atround t, algorithm specifies weights pit), . p,st) such that )}, pl.(t) =1
* Choose a distribution over the different “experts”

2. Algorithm experiences “loss” at time t of (p(t), £())
« £ €[0,1]™ is an adversarially picked loss vector

* Goal: Minimize ¥'T_,(p®, )
* Try to compete with “best single expert in hindsight”

e minY;_, fgt) -- same as goal when pi(t) = 1forallt
l



Hedge Algorithm

Hedge(f), where § € [0,1]
1. Initializew® = [1/n,...,1/n] € R®
2. Fort=1,..,T

(t)
W—(t) (normalize w into a distribution)
w

i

2. Receive loss (pt®), £(D)

3. Update Wl-(t+1) = Wi(t)ﬁ{)lgt) (downweight experts based on loss)
Guarantee:2f=1(p(t), Py < ﬁ (logn +log(1/B) min Y.I_, fgt))
- l

* Must choose 5 to balance the two costs

1. Setp® =



Hedge Guarantees

+ 221 (p®,£0) < TminTL, £ + 0 (\/loin)

e LHS: average loss at each step
* RHS: average loss of best expert in hindsight, plus “regret”
* Regret goestoOasT —

* We can be very competitive with choosing the best expert in
hindsight!

* Very powerful framework! Useful in linear programming, game
theory, etc.

* Now, how do we use this for standard ML classification...?



AdaBoost

* Given algorithm WeakLearn that gets 55% accuracy on a training set.
Can we boost this to high probability?

* Wrong way: Run the algorithm many times on the dataset, treat
resulting classifiers as “experts.” “Put large weight on good classifiers”

* Right way: Treat the datapoints as experts. Put large weight on points
that haven’t been learned yet.



AdaBoost

1. Initializew® = [1/n,...,1/n] € R®

2. Fort=1,..,T
w ()
1. Set p(t) =5 ® (normalize w into a distribution)

i l

2. Run WeakLearn on training set (with weights p(t))
* Obtain classifier h®® which maps (x, y) datapoints to [0,1] (confidence in classification)

3. Calculate error g = Zipi(t)|h(t) (x;) — y;| (should be < 0.5 by WeakLearn
guarantees)

A ® ().
4. Define f; = ,ifep < 1/2 set W( D _ W(t)ﬁl W )=yl

St [ t
* Note: If & blg, then (; is big. Many errors, so don’t downweight points!

3. h(x)=1ifXI_;log (ﬁt) RO (x) > —ZT 1log( ) 0 else

Bt



Illustration of AdaBoost

Original data set, D,

Update weights, D,

Update weights, D,

Combined classifier




Training Error

* Training error: z o H{h(xy) # yi} < 2" [1{=4 \/Et(l — &)

n

* Suppose we say & < % — ¥ (bound on error of t-th classifier)
e Then training error < exp(—2Ty?) (decreases exponentially fast)
* But we really want good test error...

* An alternate perspective: gradient descent on loss ), e ~Yih(xi)
* Generalize well when using a simple base classifier



Overtfitting with AdaBoost

Bagging Boosting
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Overfitting with AdaBoost
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Face detection application (Viola, Jones '01)

 Start with very very simple
classifiers

* Use boosting to combine into
something better

0,



Face detection application (Viola, Jones '01)




Bagging and Boosting

* “Simple” way to improve performance

* Generic, flexible with any base learner

* Loses some interpretability

* Bagging: can be done in parallel

* Boosting: inherently sequential (thus takes lost of time)



