Bagging and Boosting

Gautam Kamath

Bagging

Bagging: Bootstrap Aggregating

* Bootstrap sampling + aggregation
 Example: estimate u given Xy, ..., X,, ~ N(u, 0%)
* Simple solution: use empirical mean i = %in

~ A 1 1 1 2
* Note E|ji] = u, Var|ji] = Var [;ZXL'] = ﬁVar[ZXi] =—=-n: Var[X;] = =.

n

e Variance may be very large...

* If we have Bn points from N(u, %), can form §; = {Xy, ..., X, }, Sz =
Xnt1 o Xandr o, Sp = (X(a—vns1 - Xpn)

N 1 A 1 A
o ‘Ll(J) — ;ZZES]'Z and ‘u(avg) — EZ]E[B] ‘u(])

Bootstrap Sampling

* Averaging over B independent datasets reduces variance by factor B
* But needs B times more data...

* |dea: cheat and just reuse parts of the same dataset!
* Not independent, but still seems to work

* Bootstrap sampling = sampling with replacement

Bootstrap Example

* Given dataset of size n, create B datasets of size n, where each is
constructed by drawing n samples (with replacement) from original

* Example: Given dataset X, X,, X3, X4, X5
5 = {Xg;X4;X1,X1,X4},SZ = {X5’X5'X3:X1:X2} — ...

o Again’ use ﬂ(.’) — lZZESjZ and ‘[I(avg) Z ‘u(])

n
. E[ﬁ(avg)] = u, Var [%Zje[B]ﬁ(j)] —7?

e Can’t compute variance as before, since we lost independence
* Still works in practice by reducing variance anyway!

Bagging in ML

* Some methods are inherently high variance

* Decision trees
* Learn decision tree on 2 halves of the same dataset — (very?) different trees

e Use bootstrap aggregating to reduce variance
1. Bootstrap sample B datasets of size n

2. Run some learning algorithm on each, get classifiers f(l), ...,f(B)
3. Aggregate f(D, ..., f(B)

* How? Regression f(x) = %Zf(j) (x).

« Classification f(x) = majority vote of f) (x)

Random Forests

* Bagging on decision trees
e Twist to add randomness/make bootstrap samples “look” more independent

 Standard decision trees: When choosing which feature to split on,
look at all d features and pick the “best” one

* Downside: if one feature is very informative, will be used in all B datasets

 Random forests: When choosing which feature to split on, look at a
random subsample of m « d features and pick the “best” one

* Say,m = Vd
* Resample for each split

Random Forests

Error

0.30

025

020

015

a.1a

nN""f'
J'”

H

|,
'.|Il

||r'|

\
TR T TN Y

] L

.. .I l'l“l“..I

AL

'TLUH'J\

[N
v "'l'ml:

|'r|'||:

= Test Bagging
Test RandomForest
—— (DOB: Bagging
D0B: RandomForest

T
150

Mumbear of Trees

T
200

T
250

T
300

Test Classification Error

0.5

0.4

0.3

02

7
%'D

m=/p

Mumber of Trees

Boosting

Boosting

* Given several “weak learners,” can we combine them into a “strong
learner”?

* Weak learner: “55% accurate” (slightly better than random guess)
* Focus on binary classification today

 Strong learner: “90%+ accurate” (a good classifier)

* Iterative process. Train a classifier. “Downweight” points it gets right,
“upweight” points it gets wrong. Train classifier on new weighted
dataset (draw)

* Bit of a diversion until we get to that...

“Online Learning with Experts”

* Example: Horse racing, with n horses and T races. How to choose
which horse to bet on? How to update your bet after each race?

* More general setting, T rounds of the following:

1. Atround t, algorithm specifies weights pit), . p,st) such that)}, pl.(t) =1
* Choose a distribution over the different “experts”

2. Algorithm experiences “loss” at time t of (p(t), £())
« £ €[0,1]™ is an adversarially picked loss vector

* Goal: Minimize ¥'T_,(p®,)
* Try to compete with “best single expert in hindsight”

e minY;_, fgt) -- same as goal when pi(t) = 1forallt
l

Hedge Algorithm

Hedge(f), where § € [0,1]
1. Initializew® = [1/n,...,1/n] € R®
2. Fort=1,..,T

(t)
W—(t) (normalize w into a distribution)
w

i

2. Receive loss (pt®), £(D)

3. Update Wl-(t+1) = Wi(t)ﬁ{)lgt) (downweight experts based on loss)
Guarantee:2f=1(p(t), Py < ﬁ (logn +log(1/B) min Y.I_, fgt))
- l

* Must choose 5 to balance the two costs

1. Setp® =

Hedge Guarantees

+ 221 (p®,£0) < TminTL, £ + 0 (\/loin)

e LHS: average loss at each step
* RHS: average loss of best expert in hindsight, plus “regret”
* Regret goestoOasT —

* We can be very competitive with choosing the best expert in
hindsight!

* Very powerful framework! Useful in linear programming, game
theory, etc.

* Now, how do we use this for standard ML classification...?

AdaBoost

* Given algorithm WeakLearn that gets 55% accuracy on a training set.
Can we boost this to high probability?

* Wrong way: Run the algorithm many times on the dataset, treat
resulting classifiers as “experts.” “Put large weight on good classifiers”

* Right way: Treat the datapoints as experts. Put large weight on points
that haven’t been learned yet.

AdaBoost

1. Initializew® = [1/n,...,1/n] € R®

2. Fort=1,..,T
w ()
1. Set p(t) =5 ® (normalize w into a distribution)

i l

2. Run WeakLearn on training set (with weights p(t))
* Obtain classifier h®® which maps (x, y) datapoints to [0,1] (confidence in classification)

3. Calculate error g = Zipi(t)|h(t) (x;) — y;| (should be < 0.5 by WeakLearn
guarantees)

A ® ().
4. Define f; = ,ifep < 1/2 set W(D _ W(t)ﬁl W)=yl

St [t
* Note: If & blg, then (; is big. Many errors, so don’t downweight points!

3. h(x)=1ifXI_;log (ﬁt) RO (x) > —ZT 1log() 0 else

Bt

Illustration of AdaBoost

Original data set, D,

Update weights, D,

Update weights, D,

Combined classifier

Training Error

* Training error: z o H{h(xy) # yi} < 2" [1{=4 \/Et(l — &)

n

* Suppose we say & < % — ¥ (bound on error of t-th classifier)
e Then training error < exp(—2Ty?) (decreases exponentially fast)
* But we really want good test error...

* An alternate perspective: gradient descent on loss), e ~Yih(xi)
* Generalize well when using a simple base classifier

Overtfitting with AdaBoost

Bagging Boosting
20-

o\

N

E

%0 100 1000 10 100 1000
classifiers
g 1.0- 1.0-
-z . °
-
=
=
e
- v "
v 0.5 0.5
=
~
=S
£
=
(&)
1 -0.5 -1 -0.5

Overfitting with AdaBoost

40 =
1]
-
f -
—_— Adaboosl lesl arror
————— Adabaosl lrain amor
20 - =T,
w ——— Adaboost test error
- T ~. mmmm Adakoost train emror
1
\.\\
- s
5
l‘ﬂ
O = R REI] ' RTI R e e T E el e I s s o e BRI IT]
1e1 1e2 1ed 1ad 1es 1ed
O = SRR SR "SRRI ' ...‘nrr-—-|—|—'.rr||1'l — i =i i winin 5
121 12 123 1ed 1e5 1e6
u -

= LF min margin
Adaboost min margin

LFP min mangin

Adabaost min margin

Face detection application (Viola, Jones '01)

 Start with very very simple
classifiers

* Use boosting to combine into
something better

0,

Face detection application (Viola, Jones '01)

Bagging and Boosting

* “Simple” way to improve performance

* Generic, flexible with any base learner

* Loses some interpretability

* Bagging: can be done in parallel

* Boosting: inherently sequential (thus takes lost of time)

