Multilayer Perceptrons

Gautam Kamath

Onto Neural Networks

L STATISTICAL LEARNING

Gentlemen, our learner

overgeneralizes because the
C-Dimension of our Kernel
s too high, Get some
experts and minimze the
structural risk in a new one.
Rework our loss function,
ake the next kernel stable,

nbiased and consider using 3

Recall: The XOR Problem

* (Draw it)

* There is no linear separator which separates the +’s from the —’s
e Can prove it, but | won’t

* How can we solve this problem?

* Kernels
* Apply mapping to data, use linear model on top
e Can be some generic kernel, “hand-crafted” features (domain expertise), etc.

* Neural Network
* Learn a mapping of data (from data), use linear model on top
* Learn a representation

Drawing some old models

 (Draw perceptron in graphical form)
ex €ER%, J =xyw; +x,w, +b={(x,w)+ b

* (Add on sigmoid to output to make into logistic regression)
1

* sigmoid(t) = o(t) = =

1
1+exp(—(w,x)—b)

*y = (logistic regression)

Drawing a simple multilayer perceptron

e (Draw 2LNN with width-2 hidden layer, x input, u and c first layer
weights and biases, z hidden layer pre-activation, f non-linearity, h
hidden layer post-activation, w and b second layer weights and
biases, y output)

 (Label input layer, hidden layer, representation layer, output layer,
non-linear activation R = R)

Some calculations for XOR

°Z=Ux+c,h—f(z) y=(hw)+b
e Consider: U =]c—[] []b——

e Parameters to be learned, but suppose they’re just given for now

 Choose f(t) = max(0,t) = ReLU(t) (draw)

* Activation function — this is a hyperparameter choice

exy =[]y =-1.z= [_01],h= [8],y= ~1

- 22

i =1.z= [é],h= [(1)],)7=2—1=1,etc.

* Adding the non-linear f really gave it a lot more powerful!

Oxzz

Drawing a bigger multilayer perceptron

* (Draw wider three-layer MLP, input x € R%, output § € R™)
 (lllustrate depth and width, representation layer)

e 20 = WDy D = (1), 2 = WD),

* What to do with output yy € R™?
e Put through softmax to get distribution over m classes (confidences of each)
. 9, = exp(¥;)
X, exp(F))
* What loss function? Use the cross-entropy loss
* to(x,y) = — XiZ1 yilogP;
* Use “one-hot encoding” of y:if y = ¢, then y. = 1, and y; = 0 for other entries
* ¥y = gg(x), where gg is a (somewhat complicated) function

Activation Functions (Draw)

* Non-linear

 Sigmoid: o(t) = L
5 ' 1+e t 1+et
h et_e—t
Tanh: tanh(t) = ——

* ReLU: relu(t) = max(0, t)

* Still has a strong gradient signal even if t is large

Training

* Loss function: arg ming L = %Zifg (x(i),y(i))
* Recall £9(x,y) = —Xj1yjlogy;

e Just use gradient descent!
« 0t =01 — VLt

e But... how to compute VL?

* Recall y = gg(x) is some complicated function... how to take derivative?
* Luckily computers are very good at this

* Automatic differentiation, backpropagation algorithm
* Chain rule + dynamic programming

Backpropagation (a simple example)

* Simplecase:x €ER, f,g:R—> R

*Sayy =g(x),z=f(y) = f(g(x)

. dz dz d
e Chain rule: — = cd
dx dy dx

* More complex: z =ux,h = f(z),y = wh,L = g(y) (draw)
dL dy dy dh dz
dy’ dw’dh’dz’ du
e But we care about derivatives of L wrt parameters u, w
,dL _ dL dy dL _ dL dy dh dz

dw dy dw du dy dh dz du

e Can compute several derivatives easily:

and

Backpropagation (multivariate)

«Sayx e R™M,y e R",zeR
*z=fy)=f(lgkx))

aZ aZ ay] o ”
Then ox Z]- 9y o, (draw, must sum over all “paths” from x; to z)
: dy r
* Alternate notation: V.. z = — Vyz

* Product of Jacobian matrix and gradient

* But the big picture: gradients can be decomposed as product of appropriate
derivatives of subsequent layers using chain rule

* Need appropriate dynamic programming to do efficiently (backpropagation)

Universality of MLPs

* Any continuous function g:[0,1]¢ — R can be approximated
arbitrarily well by some 2 layer NN with arbitrary non-polynomial
activation

e (maybe draw)
e Caveat: may require the hidden layer to be incredibly wide

