
Multilayer Perceptrons
Gautam Kamath

Onto Neural Networks

Recall: The XOR Problem

• (Draw it)

• There is no linear separator which separates the +’s from the –’s

• Can prove it, but I won’t

• How can we solve this problem?

• Kernels
• Apply mapping to data, use linear model on top

• Can be some generic kernel, “hand-crafted” features (domain expertise), etc.

• Neural Network
• Learn a mapping of data (from data), use linear model on top

• Learn a representation

Drawing some old models

• (Draw perceptron in graphical form)

• 𝑥 ∈ 𝐑2, ෤𝑦 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏 = 𝑥,𝑤 + 𝑏

• (Add on sigmoid to output to make into logistic regression)

• sigmoid 𝑡 = 𝜎 𝑡 =
1

1+𝑒−𝑡

• ො𝑦 =
1

1+exp(− 𝑤,𝑥 −𝑏)
(logistic regression)

Drawing a simple multilayer perceptron

• (Draw 2LNN with width-2 hidden layer, 𝑥 input, 𝑢 and 𝑐 first layer
weights and biases, 𝑧 hidden layer pre-activation, 𝑓 non-linearity, ℎ
hidden layer post-activation, 𝑤 and 𝑏 second layer weights and
biases, ෤𝑦 output)

• (Label input layer, hidden layer, representation layer, output layer,
non-linear activation 𝐑 → 𝐑)

Some calculations for XOR

• 𝑧 = 𝑈𝑥 + 𝑐, ℎ = 𝑓(𝑧), ෤𝑦 = ℎ,𝑤 + 𝑏

• Consider: 𝑈 =
1 1
1 1

, 𝑐 =
0
−1

, 𝑤 =
2
−4

, 𝑏 = −1

• Parameters to be learned, but suppose they’re just given for now

• Choose 𝑓 𝑡 = max 0, 𝑡 = ReLU(𝑡) (draw)
• Activation function – this is a hyperparameter choice

• 𝑥1 =
0
0
, 𝑦1 = −1. 𝑧 =

0
−1

, ℎ =
0
0
, ෤𝑦 = −1

• 𝑥2 =
0
1
, 𝑦1 = 1. 𝑧 =

1
0
, ℎ =

1
0
, ෤𝑦 = 2 − 1 = 1, etc.

• Adding the non-linear 𝑓 really gave it a lot more powerful!

Drawing a bigger multilayer perceptron

• (Draw wider three-layer MLP, input 𝑥 ∈ 𝐑𝑑, output ෤𝑦 ∈ 𝐑𝑚)
• (Illustrate depth and width, representation layer)

• 𝑧(1) = 𝑊(1)𝑥, ℎ(1) = 𝑓 𝑧 1 , 𝑧(2) = 𝑊(2)ℎ(1), …

• What to do with output ෤𝑦 ∈ 𝐑𝑚?
• Put through softmax to get distribution over 𝑚 classes (confidences of each)

• ො𝑦𝑖 =
exp(෤𝑦𝑖)

σ𝑗=1
𝑚 exp(෤𝑦𝑗)

• What loss function? Use the cross-entropy loss
• ℓ𝜃 𝑥, 𝑦 = −σ𝑖=1

𝑚 𝑦𝑖 log ො𝑦𝑖
• Use “one-hot encoding” of 𝑦: if 𝑦 = 𝑐, then 𝑦𝑐 = 1, and 𝑦𝑖 = 0 for other entries

• ො𝑦 = 𝑔𝜃(𝑥), where 𝑔𝜃 is a (somewhat complicated) function

Activation Functions (Draw)

• Non-linear

• Sigmoid: 𝜎 𝑡 =
1

1+𝑒−𝑡
=

𝑒𝑡

1+𝑒𝑡

• Tanh: tanh 𝑡 =
𝑒𝑡−𝑒−𝑡

𝑒𝑡+𝑒−𝑡

• ReLU: relu 𝑡 = max 0, 𝑡
• Still has a strong gradient signal even if 𝑡 is large

Training

• Loss function: argmin𝜃 𝐿 =
1

𝑛
σ𝑖 ℓ𝜃 𝑥(𝑖), 𝑦(𝑖)

• Recall ℓ𝜃 𝑥, 𝑦 = −σ𝑗=1
𝑚 𝑦𝑗 log ො𝑦𝑗

• Just use gradient descent!
• 𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑡∇𝐿𝜃𝑡−1

• But… how to compute ∇𝐿?
• Recall ො𝑦 = 𝑔𝜃(𝑥) is some complicated function… how to take derivative?

• Luckily computers are very good at this

• Automatic differentiation, backpropagation algorithm
• Chain rule + dynamic programming

Backpropagation (a simple example)

• Simple case: 𝑥 ∈ 𝐑, 𝑓, 𝑔: 𝐑 → 𝐑

• Say 𝑦 = 𝑔(𝑥), 𝑧 = 𝑓 𝑦 = 𝑓(𝑔(𝑥)

• Chain rule:
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦
⋅
𝑑𝑦

𝑑𝑥

• More complex: 𝑧 = 𝑢𝑥, ℎ = 𝑓 𝑧 , 𝑦 = 𝑤ℎ, 𝐿 = 𝑔(𝑦) (draw)

• Can compute several derivatives easily:
𝑑𝐿

𝑑𝑦
,
𝑑𝑦

𝑑𝑤
,
𝑑𝑦

𝑑ℎ
,
𝑑ℎ

𝑑𝑧
,
𝑑𝑧

𝑑𝑢

• But we care about derivatives of 𝐿 wrt parameters 𝑢,𝑤

•
𝑑𝐿

𝑑𝑤
=

𝑑𝐿

𝑑𝑦
⋅
𝑑𝑦

𝑑𝑤
and

𝑑𝐿

𝑑𝑢
=

𝑑𝐿

𝑑𝑦
⋅
𝑑𝑦

𝑑ℎ
⋅
𝑑ℎ

𝑑𝑧
⋅
𝑑𝑧

𝑑𝑢

Backpropagation (multivariate)

• Say 𝑥 ∈ 𝐑𝑚, 𝑦 ∈ 𝐑𝑛, 𝑧 ∈ 𝐑

• 𝑧 = 𝑓 𝑦 = 𝑓(𝑔 𝑥)

• Then
𝜕𝑧

𝜕𝑥𝑖
= σ𝑗

𝜕𝑧

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑥𝑖
(draw, must sum over all “paths” from 𝑥𝑖 to 𝑧)

• Alternate notation: ∇𝑥𝑧 =
𝜕𝑦

𝜕𝑥

𝑇
∇𝑦𝑧

• Product of Jacobian matrix and gradient

• But the big picture: gradients can be decomposed as product of appropriate
derivatives of subsequent layers using chain rule

• Need appropriate dynamic programming to do efficiently (backpropagation)

Universality of MLPs

• Any continuous function 𝑔: 0,1 𝑑 → 𝐑 can be approximated
arbitrarily well by some 2 layer NN with arbitrary non-polynomial
activation

• (maybe draw)

• Caveat: may require the hidden layer to be incredibly wide

