
CS480/680: Intro to ML
Lecture 01: Perceptron
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Announcements

• Assignment 1 to be posted on Thursday 1/14

• Projects
• NeurIPS: https://papers.nips.cc/

• ICML: http://proceedings.mlr.press/v80/

• COLT: http://proceedings.mlr.press/v75/

• AISTATS: http://proceedings.mlr.press/v84/

• ICLR: https://iclr.cc/Conferences/2018/Schedule?type=Poster

• JMLR: http://www.jmlr.org/papers/v18/
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Perceptron
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Supervised learning
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Spam fi l ter ing example

• Training set (X = [x1, x2, … , xn], y=[y1, y2, … , yn])
• xi in X = Rd: instance i with d dimensional features

• yi in Y = {-1, 1}: instance i is spam or ham?

• Good feature representation is of uttermost importance
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and viagra the of nigeria y

x1 1 1 0 1 1 +1

x2 0 0 1 1 0 -1

x3 0 1 1 0 0 +1

x4 1 0 0 1 0 -1

x5 1 0 1 0 1 +1

x6 1 0 1 1 0 -1



Batch vs. Online

• Batch learning
• Interested in performance on test set X’

• Training set (X, y) is just a means

• Statistical assumption on X and X’

• Online learning
• Data comes one by one (streaming)

• Need to predict y before knowing its true value

• Interested in making as few mistakes as possible

• Compare against some baseline
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Thought Experiment

• Repeat the following game
• Observe instance xi

• Predict its label ො𝑦𝑖 (in whatever way you like)

• Reveal the true label 𝑦𝑖
• Suffer a mistake if ො𝑦𝑖 ≠ 𝑦𝑖

• How many mistakes in the worst-case?

• Predict first, reveal next: no peek into the future!
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Linear threshold function

• Find (w, b) such that for all i:

yi = sign(<w, xi> + b)
• w in Rd: weight vector for the separating hyperplane

• b in R: offset (threshold, bias) of the separating hyperplane

• sign: thresholding function
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Perceptron [Rosenblatt ’58]
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History
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1969



The perceptron algori thm

• Typically δ = 0, w0 = 0, b0 = 0
✓ y(<x, w>+b) > 0 implies y = sign(<x, w>+b)

x y(<x, w>+b) < 0 implies y ≠ sign(<x, w>+b)

? y(<x, w>+b) = 0 implies sitting on the hyperplane

• Lazy update: if it ain’t broke, don’t fix it
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predictiontruth



Does i t  work?

• w0 = [0, 0, 0, 0, 0], b0 = 0, pred -1 on x1, wrong

• w1 = [1, 1, 0, 1, 1], b1 = 1, pred 1 on x2, wrong

• w2 = [1, 1, -1, 0, 1], b2 = 0, pred -1 on x3, wrong

• w3 = [1, 2, 0, 0, 1], b3 = 1, pred 1 on x4, wrong

• w4 = [0, 2, 0, -1, 1], b4 = 0, pred 1 on x5, correct

• w4 = [0, 2, 0, -1, 1], b4 = 0, pred -1 on x6, correct
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and viagra the of nigeria y

x1 1 1 0 1 1 +1

x2 0 0 1 1 0 -1

x3 0 1 1 0 0 +1

x4 1 0 0 1 0 -1

x5 1 0 1 0 1 +1

x6 1 0 1 1 0 -1



Simpli f icat ion: Linear Feasibi l i ty
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• Padding constant 1 to the end of each x

• Pre-multiply x with its label y

• Find z such that ATz > 0, where A = [a1, a2, …, an]

denote as z

denote as a



Perceptron Convergence Theorem

Theorem (Block’62; Novikoff’62). Assume there exists
some z such that ATz > 0, then the perceptron algorithm
converges to some z*. If each column of A is selected
indefinitely often, then ATz* > δ.
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Corollary. Let δ = 0 and z0 = 0. Then perceptron 
converges after at most (R/γ)2 steps, where



The Margin
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• ∃z s.t. ATz > 0 iff for some hence all s>0 ∃z s.t. ATz > s1

• From the proof, perceptron convergence depends on:

• The larger the margin is, the more
(linearly) separable the data is,
hence the faster perceptron learns.



But

✓The larger the margin, the faster perceptron converges 

x But perceptron stops at an arbitrary linear separator…

• Which one do you prefer?
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Support vector machines



What i f  non-separable?

• Find a better feature representation

• Use a deeper model

• Soft margin
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Perceptron Boundedness Theorem

• Perceptron convergence requires the existence of a 
separating hyperplane
• What if it fails? (trust me, it will)
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Theorem (Minsky and Papert’67; Block and Levin’70).

The iterate z = (w; b) of the perceptron algorithm is 
always bounded. In particular, if there is no separating 
hyperplane, then perceptron cycles.

“…proof of this theorem is complicated and obscure. So are the other proofs 

we have since seen...” --- Minsky and Papert, 1987



When to stop perceptron?

• Online learning: never

• Batch learning
• Maximum number of iteration reached or run out of time

• Training error stops changing

• Validation error stops decreasing

• Weights stopped changing much, if using a diminishing step 
size ηt, i.e., wt+1  wt + ηt yi xi
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Mult iclass Perceptron

• One vs. all
• Class c as positive

• All other classes as negative

• Highest activation wins: pred = argmaxc wc
Tx

• One vs. one
• Class c as positive

• Class c’ as negative

• Voting
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Questions?
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