
CS480/680–Spring 2020 §12 AUTOMATIC DIFFERENTIATION University of Waterloo

12 Automatic Differentiation
Goal

Forward and reverse mode auto-differentiation.

Alert 12.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 12.2: Function Superposition and Computational Graph (Bauer 1974)

Let BF be a class of basic functions. A (vector-valued) function g : X ⊆ Rd → Rm is a superposition of the
basic class BF if the following is satisfied:

• There exist some DAG G = (V ,E) where using topological sorting we arrange the nodes as follows:

v1, . . . , vd︸ ︷︷ ︸
input

, vd+1, . . . , vd+k,︸ ︷︷ ︸
intermediate variables

vd+k+1, . . . , vd+k+m︸ ︷︷ ︸
output

, and (vi, vj) ∈ E =⇒ i < j.

Here we implicitly assume the outputs of the function g do not depend on each other. If they do, we
need only specify the indices of the output nodes accordingly (i.e. they may not all appear in the end).

• For each node vi, let Ii := {u ∈ V : (u, vi) ∈ E } and Oi := {u ∈ V : (vi, u) ∈ E } denote the (immediate)
predecessors and successors of vi, respectively. Clearly, Ii = ∅ if i ≤ d (i.e. input nodes) and Oi = ∅ if
i > d+ k (i.e. output nodes).

• The nodes are computed as follows: sequentially for i = 1, . . . , d+ k +m,

vi =

{
xi, i ≤ d
fi(Ii), i > d

, where fi ∈ BF . (12.1)

Our definition of superposition closely resembles the computational graph of Bauer (1974), who attributed
the idea to Kantorovich (1957).

Bauer, F. L. (1974). “Computational Graphs and Rounding Error”. SIAM Journal on Numerical Analysis, vol. 11,
no. 1, pp. 87–96.

Kantorovich, L. V. (1957). “On a system of mathematical symbols, convenient for electronic computer operations”.
Soviet Mathematics Doklady, vol. 113, no. 4, pp. 738–741.

Exercise 12.3: Neural Networks as Function Superposition

Let BF = {+,×, σ, constant}. Prove that any multi-layer NN is a superposition of the basic class BF .
Is exp a superposition of the basic class above?

Theorem 12.4: Automatic Differentiation (e.g. Kim et al. 1984)

Let BF be a basic class of differentiable functions that includes +,×, and all constants. Denote T (f) as
the complexity of computing the function f and T (f,∇f) the complexity with additional computation of
the gradient. Let If and Of be the input and output arguments and assume there exists some constant
C = C(BF) > 0 so that

∀f ∈ BF , T (f,∇f) + |If ||Of |[T (+) + T (×) + T (constant)] ≤ C · T (f).

Yaoliang Yu 19 –Version 0.0–January 09, 2018–

https://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.jstor.org/stable/2156433
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=21784&option_lang=eng

CS480/680–Spring 2020 §12 AUTOMATIC DIFFERENTIATION University of Waterloo

Then, for any superposition g : Rd → Rm of the basic class BF , we have

T (g,∇g) ≤ Cγ(m ∧ d) · T (g),

where γ is the maximal output dimension of basic functions used to superpose g.

Proof. Applying the chain rule to the recursive formula (12.1) it is clear that any superposition g is differen-
tiable too. We split the proof into two parts: a forward mode and a backward mode.

Forward mode: Let us define the block matrix V = [V1, . . . , Vd, Vd+1, . . . , Vd+k, Vd+k+1, . . . , Vd+k+m] ∈
Rd×

∑
i di , where each column block Vi corresponds to the gradient ∇vi = ∂vi

∂x ∈ R
d×di , where di is the output

dimension of node vi (typically 1). By definition of the input nodes we have

Vi = ei, i = 1, . . . , d,

where ei is the standard basis vector in Rd. Using the recursive formula (12.1) and chain rule we have

Vi =
∑
j∈Ii

Vj · ∇jfi, where ∇jfi =
∂fi
∂vj
∈ Rdj×di .

In essence, by differentiating at each node, we obtained a square and sparse system of linear equations, where
∇jfi are known coefficients and Vi are unknown variables. Solving the linear system yields Vd+k+1, . . . , Vd+k+m,
the desired gradient of g. Thanks to the topological ordering, we can simply solve Vi one by one. Let
γ = maxi di be the maximum output dimension of any node. We bound the complexity of the forward mode
as follows:

T (g,∇g) ≤
∑
i∈V

T (fi,∇fi) +
∑
j∈Ii

ddidj [T (+) + T (×) + T (constant)]

≤ dγ
∑
i∈V

T (fi,∇fi) + |Ifi ||Ofi |[T (+) + T (×) + T (constant)] ≤ dγCT (g).

Reverse mode: Let us rename the outputs yi = vd+k+i for i = 1, . . . ,m. Similarly we define the block matrix
V = [V1; . . . ;Vd;Vd+1; . . . ;Vd+k;Vd+k+1; . . . ;Vd+k+m] ∈ R

∑
i di×m, where each row block Vi corresponds to the

transpose of the gradient ∇vi = ∂y
∂vi
∈ Rm×di , where di is the output dimension of node vi (typically 1). By

definition of the output nodes we have

Vd+k+i = ei, i = 1, . . . ,m, ei ∈ R1×m.

Using the recursive formula (12.1) and chain rule we have

Vi =
∑
j∈Oi

∇ifj · Vj , where ∇ifj =
∂fj
∂vi
∈ Rdi×dj .

Again, by differentiating at each node we obtained a square and sparse system of linear equations, where ∇ifj
are known coefficients and Vi are unknown variables. Solving the linear system yields V1, . . . , Vd, the desired
gradient of g. Thanks to the topological ordering, we can simply solve Vi one by one backwards, after a forward
pass to get the function values at each node. Similar as the forward mode, we can bound the complexity as
mγCT (g).

Thus, surprisingly, for real-valued superpositions (m = γ = 1), computing the gradient, which is a d × 1
vector, costs at most constant times that of the function value (which is a scalar), if we operate in the reverse
mode! The common misconception is that the gradient has size d × 1 hence if we compute one component
at a time we end up d times slower. This is wrong, because we can recycle computations. Note also that
even reading the input already costs O(d). However, this time complexity gain, as compared to that of the
forward mode, is achieved through a space complexity tradeoff: in reverse mode we need a forward pass first
to collect and store all function values at each node, whereas in the forward mode these function values can
be computed on the fly.

Yaoliang Yu 20 –Version 0.0–January 09, 2018–

https://en.wikipedia.org/wiki/Chain_rule

CS480/680–Spring 2020 §12 AUTOMATIC DIFFERENTIATION University of Waterloo

Kim, K. V., Yuri E. Nesterov, and B. V. Cherkasskii (1984). “An estimate of the effort in computing the gradient”.
Soviet Mathematics Doklady, vol. 29, no. 2, pp. 384–387.

Algorithm 12.5: Automatic Differentiation (AD) Pesudocode

We summarize the forward and reverse algorithms below. Note that to compute the gradient-vector multipli-
cation ∇g ·w for some compatible vector w, we can use the forward mode and initialize Vi with w. Similarly,
to compute w · ∇g, we can use the reverse mode with proper initialization to Vd+k+i.

Algorithm: Forward Automatic Differentiation for Superposition.
Input: x ∈ Rd, basic function class BF , computational graph G
Output: gradient [Vd+k+1, . . . , Vd+k+m] ∈ Rd×m

1 for i = 1, . . . , d do // forward: initialize function values and derivatives
2 vi ← xi
3 Vi ← ei ∈ Rd×1

4 for i = d+ 1, . . . , d+ k +m do // forward: accumulate function values and derivatives
5 compute vi ← fi(Ii)
6 for j ∈ Ii do
7 compute partial derivatives ∇jfi(Ii)

8 Vi ←
∑
j∈Ii

Vj · ∇jfi

Algorithm: Reverse Automatic Differentiation for Superposition.
Input: x ∈ Rd, basic function class BF , computational graph G
Output: gradient [V1; . . . ;Vd] ∈ Rd×m

1 for i = 1, . . . , d do // backward: initialize function values and derivatives
2 vi ← xi
3 Vd+k+i ← ei ∈ R1×m

4 for i = d+ 1, . . . , d+ k +m do // forward: accumulate function values
5 compute vi ← fi(Ii)

6 for i = d+ k, . . . , 1 do // backward: accumulate function values and derivatives
7 Vi ←

∑
j∈Oi

∇ifj · Vj

We remark that, as suggested by Wolfe (1982), one effective way to test AD (or manually programmed
derivatives) and locate potential errors is through the classic finite difference approximation.
Wolfe, Philip (1982). “Checking the Calculation of Gradients”. ACM Transactions on Mathematical Software, vol. 8,

no. 4, pp. 337–343.

Exercise 12.6: Matrix multiplication

To understand the difference between forward-mode and backward-mode differentiation, let us consider the
simple matrix multiplication problem: Let A` ∈ Rd`×d`+1 , ` = 1, . . . , L, where d1 = d and dL+1 = m. We are
interested in computing

A =

L∏
`=1

A`.

• What is the complexity if we multiply from left to right (i.e. ` = 1, 2, . . . , L)?

• What is the complexity if we multiply from right to left (i.e. ` = L,L− 1, . . . , 1)?

• What is the optimal way to compute the product?

Yaoliang Yu 21 –Version 0.0–January 09, 2018–

https://cs.uwaterloo.ca/~y328yu/classics/Kim84.pdf
https://en.wikipedia.org/wiki/Finite_difference
http://doi.acm.org/10.1145/356012.356013

CS480/680–Spring 2020 §12 AUTOMATIC DIFFERENTIATION University of Waterloo

Remark 12.7: Further insights on AD

If we associate an edge weight wij =
∂vj
∂vi

to (i, j) ∈ E , then the desired gradient

∂gi
∂xj

=
∑

path P :vj→vi

∏
e∈P

we. (12.2)

However, we cannot compute the above naively, as the number of paths in a DAG can grow exponentially
quickly with the depth. The forward and reverse modes in the proof of Theorem 12.4 correspond to two
dynamic programming solutions. (Incidentally, this is exactly how one computes the graph kernel too.)

Naumann (2008) showed that finding the optimal way to compute (12.2) is NP-hard.
Naumann, Uwe (2008). “Optimal Jacobian accumulation is NP-complete”. Mathematical Programming, vol. 112, no. 2,

pp. 427–441.

Remark 12.8: Tightness of dimension dependence in AD (e.g. Griewank 2012)

The dimensional dependence m ∧ d cannot be reduce in general. Indeed, consider the simple function f(x) =
sin(w>x)b, where x ∈ Rd and b ∈ Rm. Computing f clearly costs O(d+m) (assuming sin can be evaluated
in O(1)) while even outputting the gradient costs O(dm).
Griewank, Andreas (2012). “Who Invented the Reverse Mode of Differentiation?” Documenta Mathematica, vol. Extra

Volume ISMP, pp. 389–400.

Exercise 12.9: Backpropogation (e.g. Rumelhart et al. 1986)

Apply Theorem 12.4 to multi-layer NNs and recover the celebrated backpropogation algorithm. Distinguish
two cases:

• Fix the network weights W1, . . . ,WL and compute the derivative w.r.t. the input x of the network. This
is useful for constructing adversarial examples.

• Fix the input x of the network and compute the derivative w.r.t. the network weights W1, . . . ,WL. This
is useful for training the network.

Suppose we know how to compute the derivatives of f(x, y). Explain how to compute the derivative of
f(x, x)?

• Generalize from above to derive the backpropogation rule for convolutional neural nets (CNN).

• Generalize from above to derive the backpropogation rule for recurrent neural nets (RNN).

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986). “Learning representations by back-propagating
errors”. Nature, vol. 323, pp. 533–536.

Definition 12.10: (Kim et al. 1984)

Kim et al. (1984) pointed out an important observation, namely that the proof of Theorem 12.4 only uses the
chain-rule property of differentiation:

∂f

∂x
=
∂f

∂y
· ∂x
∂y
.

In other words, we could replace differentiation with any other operation that respects the chain rule and obtain
the same efficient procedure for computation. For instance, the relative differential in numerical analysis or
the directional derivative can both be efficiently computed in the same way.
Kim, K. V., Yuri E. Nesterov, V. A. Skokov, and B. V. Cherkasskii (1984). “An efficient algorithm for computing

derivatives and extremal problems”. Ekonomika i matematicheskie metody, vol. 20, no. 2, pp. 309–318.

Yaoliang Yu 22 –Version 0.0–January 09, 2018–

https://en.wikipedia.org/wiki/Graph_kernel
https://doi.org/10.1007/s10107-006-0042-z
https://www.math.uni-bielefeld.de/documenta/vol-ismp/52_griewank-andreas-b.pdf
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://cs.uwaterloo.ca/~y328yu/classics/Kim84f.pdf
https://cs.uwaterloo.ca/~y328yu/classics/Kim84f.pdf

CS480/680–Spring 2020 §12 AUTOMATIC DIFFERENTIATION University of Waterloo

Definition 12.11: Fast computation of the Hessian (Møoller 1993; Pearlmutter 1994)

Similarly, one can compute the Hessian-vector multiplication efficiently as it also respects the chain rule.
Møoller, M. (1993). Exact Calculation of the Product of the Hessian Matrix of Feed-Forward Network Error Functions

and a Vector in O(N) Time. Tech. rep. DAIMI Report Series, 22(432).
Pearlmutter, Barak A. (1994). “Fast Exact Multiplication by the Hessian”. Neural Computation, vol. 6, no. 1, pp. 147–

160.

Yaoliang Yu 23 –Version 0.0–January 09, 2018–

https://doi.org/10.7146/dpb.v22i432.6748
https://doi.org/10.7146/dpb.v22i432.6748
https://www.mitpressjournals.org/doi/pdf/10.1162/neco.1994.6.1.147

	
	Optimization Basics
	Automatic Differentiation
	Graph Neural Networks
	Robustness
	Certification
	Randomized Smoothing

	Learning to Learn

