

CS480/680: Intro to ML

Lecture 13: Deep Neural Networks

Universality: the dark side

 Only proves the existence of such a NN; how to find it is another issue (training of NNs)

May need exponentially many hidden units

 Increase depth may reduce number of hidden units, significantly

Yao-Liang Yu

NP-hard

Backprop for NN

```
Require: Network depth, l
```

Require: $W^{(i)}, i \in \{1, ..., l\}$, the weight matrices of the model **Require:** $b^{(i)}, i \in \{1, ..., l\}$, the bias parameters of the model

Require: x, the input to process

Require: y, the target output

$$oldsymbol{h}^{(0)} = oldsymbol{x}$$
 for $k = 1, \dots, l$ do

$$\boldsymbol{a}^{(k)} = \boldsymbol{b}^{(k)} + \boldsymbol{W}^{(k)} \boldsymbol{h}^{(k-1)}$$

$$\boldsymbol{h}^{(k)} = f(\boldsymbol{a}^{(k)})$$

end for

$$\hat{m{y}} = m{h}^{(l)}$$

3

$$J = L(\hat{\boldsymbol{y}}, \boldsymbol{y}) + \lambda \Omega(\theta)$$

forward

f: activation function $J = L + \lambda \Omega$: training obj.

After the forward computation, compute the gradient on the output layer:

$$oldsymbol{g} \leftarrow
abla_{\hat{oldsymbol{y}}} J =
abla_{\hat{oldsymbol{y}}} L(\hat{oldsymbol{y}}, oldsymbol{y})$$

for
$$k = l, l - 1, ..., 1$$
 do

Convert the gradient on the layer's output into a gradient into the prenonlinearity activation (element-wise multiplication if f is element-wise):

$$g \leftarrow \nabla_{\boldsymbol{a}^{(k)}} J = g \odot f'(\boldsymbol{a}^{(k)})$$

Compute gradients on weights and biases (including the regularization term, where needed):

$$\nabla_{\boldsymbol{b}^{(k)}} J = \boldsymbol{g} + \lambda \nabla_{\boldsymbol{b}^{(k)}} \Omega(\theta)$$

$$abla_{oldsymbol{W}^{(k)}} J = oldsymbol{g} \ oldsymbol{h}^{(k-1) op} + \lambda
abla_{oldsymbol{W}^{(k)}} \Omega(heta)$$

Propagate the gradients w.r.t. the next lower-level hidden layer's activations:

$$oldsymbol{g} \leftarrow
abla_{oldsymbol{h}^{(k-1)}} J = oldsymbol{W}^{(k) op} \ oldsymbol{g}$$

end for

Sigmoid and tanh

Sigmoid

- Output range (0,1)
- Gradient range (0,1): $\sigma(x)(1-\sigma(x))$
- Small gradient at saturated regions
 - \rightarrow x = 0, gradient = 0.25
 - \rightarrow x = 10, gradient = 4.5396e-05
 - > x = -10, gradient = 4.5396e-05

Tanh

- Output range (-1,1)
- Gradient range (0,1): $1 \tanh^2(x)$
- Small gradient at saturated regions

Vanishing gradients

$$y = \sigma \left(w_4 \, \sigma \left(w_3 \, \sigma \left(w_2 \, \sigma (w_1 \, x) \right) \right) \right)$$

$$x \longrightarrow h_1 \longrightarrow h_2 \longrightarrow h_3 \longrightarrow y$$

- Common weight initialization in (-1, 1)
- Denote input of the i-th $\sigma()$ as a_i

This leads to vanishing gradients:

$$\frac{\partial y}{\partial w_4} = \sigma'(a_4)\sigma(a_3)$$

$$\frac{\partial y}{\partial w_3} = \sigma'(a_4)w_4\sigma'(a_3)\sigma(a_2) \le \frac{\partial y}{\partial w_4}$$

$$\frac{\partial y}{\partial w_2} = \sigma'(a_4)w_4\sigma'(a_3)w_3\sigma'(a_2)\sigma(a_1) \le \frac{\partial y}{\partial w_3}$$

$$\frac{\partial y}{\partial w_1} = \sigma'(a_4)w_4\sigma'(a_3)w_3\sigma'(a_2)w_2\sigma'(a_1)x \le \frac{\partial y}{\partial w_2}$$

Avoiding vanishing gradients

Proper initialization of network parameters

Choose activation functions that do not saturate

 Use Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) architectures.

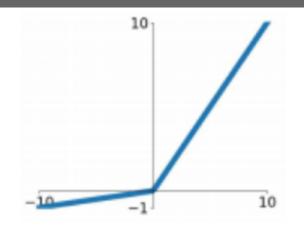
Yao-Liang Yu

• . . .

More activations

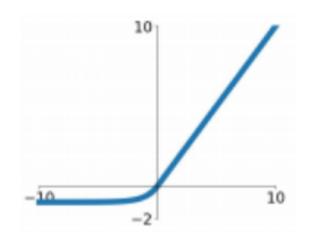
Leaky ReLU

$$f(t) = \max\{0.1t, t\}$$



ELU

$$f(t) = \begin{cases} t, & t \ge 0 \\ \alpha(e^t - 1), & t \le 0 \end{cases}$$



ReLU, Leaky ReLU, and ELU

ReLU

- Computationally efficient
- Gradient = 1 when x> 0
- Gradient = 0 when x<0 (cannot update parameter)
 - ➤ Initialize ReLU units with slightly positive values, e.g., 0.01
 - > Try other activation functions, e.g., Leaky ReLU

Yao-Liang Yu

Leaky ReLU

- Computationally efficient
- Constant gradient for both x>0 and x<0

ELU

Small gradient at negative saturation region

Tips

 Sigmoid and tanh functions are sometimes avoided due to the vanishing/exploding gradients

Use ReLU as a default choice

 Explore other activation functions, e.g., Leaky ReLU and ELU, if ReLU results in dead hidden units

Yao-Liang Yu

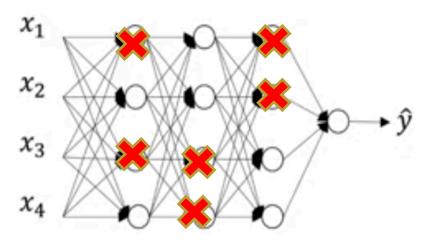
Overfitting and regularization

- High capacity increases risk of overfitting
 - > # of parameters is often larger than # of data
- Regularization: modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error
 - > Parameter norm penalties (e.g., L1 and L2 norms)
 - > Bagging
 - > Dropout
 - Data augmentation
 - > Early stopping
 - >...

Dropout

For each training example keep hidden units with probability p.

- A different and random network for each training example
- A smaller network with less capacity



e.g., let p = 0.5 for all hidden layers

delete ingoing and outgoing links for eliminated hidden units

Implementation

Consider implementing dropout in layer 1.

- Denote output of layer 1 as h with dimension 4*1
- Generate a 4*1 vector d with elements 0 or 1 indicating whether units are kept or not
- Update h by multiplying h and d element-wise
- Update h by h/p ("inverted dropout")

Inverted dropout

Motivation: keep the mean value of output unchanged

Example: Consider $h^{(1)}$ in the previous slide. $h^{(1)}$ is used as the input to layer 2. Let p=0.8.

$$z^{(2)} = W^{(2)}h^{(1)} + b^{(2)}$$

- 20% of hidden units in layer 1 are eliminated
- Without "inverted dropout", the mean of $z^{(2)}$ would be decreased by 20% roughly

Prediction

Training

Use ("inverted") dropout for each training example

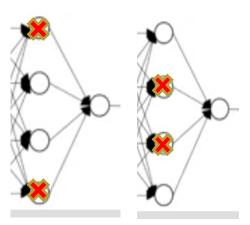
Prediction

- Usually do not use dropout
- If "inverted dropout" is used in training, no further scaling is needed in testing

Why does it work?

Intuition: Since each hidden unit can disappear with some probability, the network cannot rely on any particular units and have to spread out the weights

→ similar to L2 regularization



Another interpretation:

Dropout is training a large ensemble of models sharing parameters

Hyperparameter p

p: probability of keeping units

How to design p?

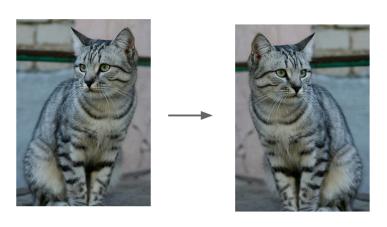
- Keep p the same for all layers
- Or, design p for each layer: set a lower p for overfitting layers, i.e., layers with a large number of units
- Can also design p for the input, but usually set p = 1 or very close to 1

Data augmentation

The best way to improve generalization is to have more training data. But often, data is limited.

One solution: create fake data, e.g., transform input Example: object recognition (classification)

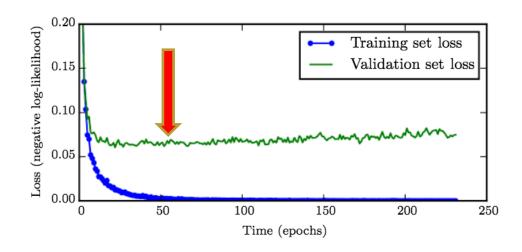
- Horizontal/vertical flip
- Rotation
- Stretching



Early stopping

For models with large capacity,

- training error decreases steadily
- validation error first decreases then increases



Batch normalization (BN)

Use BN for each dimension in hidden layers, either before activation function or after

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$ $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$ $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$

 $\mathbf{h}^{(3)} = f_3(\mathbf{W}^{(3)}\mathbf{h}^{(2)} + \mathbf{b}^{(3)})$ $\mathbf{z}^{(3)}$

Ν

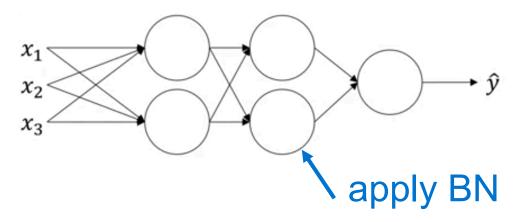
either apply BN to $z^{(3)}$ or $h^{(3)}$

γ and β are optimization variables; not hyperparameters, waterlock waterlock

Why BN? (1)

Consider applying BN to z (i.e., before activation)

- z : mean β , variance γ^2
- Robust to parameter changes in previous layers
- Independent learning of each layer



Without BN, layer 2 depends on output of layer 1 hence params of layer 1 With BN, mean and variance of $z^{(2)}$ unchanged

Why BN? (2)

Assume the orders of features in hidden layers are significantly different

- E.g., feature 1: 1; feature 2: 10³; feature 3: 10⁻³
- With BN, features are of similar scale
- Speed up learning

Why BN? (3)

BN has a slight regularization effect (not intended)

- Each mini-batch is scaled by the mean/variance computed on that mini-batch
- This adds some noise to z and to each layer's activations

Optimization

Problem of SGD: slow convergence

SGD + momentum

$$\mathbf{g} \leftarrow \nabla_{\boldsymbol{\theta}} \left(\frac{1}{m} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), y^{(i)}) \right)$$

$$\mathbf{v} \leftarrow \alpha \mathbf{v} + (1 - \alpha) \mathbf{g} \text{ exponentially weighted averages}$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \mathbf{v}$$

- Accumulate an exponentially decaying moving average of past gradients
- Hyperparameter α determines how quickly the contributions of previous gradients exponentially decay (α = 0.9 usually works well)

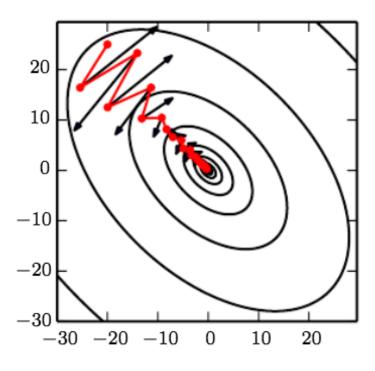
Exponentially weighted averages

Let
$$\mathbf{v}_t = \alpha \mathbf{v}_{t-1} + (1 - \alpha) \mathbf{g}_t; \quad \alpha = 0.9$$

$$\mathbf{v}_{100} = 0.1\mathbf{g}_{100} + 0.1 * 0.9\mathbf{g}_{99} + 0.1 * 0.9^{2}\mathbf{g}_{98} + \dots + 0.1 * 0.9^{99}\mathbf{g}_{1}$$

total weight: $1 - \alpha^t$ (close to 1 if t is large)

Illustration



Contour of loss function

red: SGD + momentum

• black: SGD

RMSProp (root mean square propagation)

- Greater progress in the more gently sloped directions
- One of the go-to optimization methods for deep learning

Algorithm 8.5 The RMSProp algorithm

```
Require: Global learning rate \epsilon, decay rate \rho
```

Require: Initial parameter θ

Require: Small constant δ , usually 10^{-6} , used to stabilize division by small

numbers

Initialize accumulation variables r = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\}$ with corresponding targets $\boldsymbol{y}^{(i)}$.

Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}).$

discard history from extreme past

Accumulate squared gradient: $r \leftarrow \rho r + (1 - \rho)g \odot g$.

Compute parameter update: $\Delta \theta = -\frac{\epsilon}{\sqrt{\delta + r}} \odot g$. $(\frac{1}{\sqrt{\delta + r}})$ applied element-wise

Apply update: $\theta \leftarrow \theta + \Delta \theta$.

end while

Adam (adaptive moments)

27

06/23/20

A variant combining of RMSProp and momentum

```
Algorithm 8.7 The Adam algorithm
Require: Step size \epsilon (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, \rho_1 and \rho_2 in [0,1).
  (Suggested defaults: 0.9 and 0.999 respectively)
Require: Small constant \delta used for numerical stabilization (Suggested default:
  10^{-8})
Require: Initial parameters \theta
   Initialize 1st and 2nd moment variables s = 0, r = 0
   Initialize time step t=0
   while stopping criterion not met do
     Sample a minibatch of m examples from the training set \{x^{(1)}, \dots, x^{(m)}\} with
     corresponding targets y^{(i)}.
     Compute gradient: g \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i} L(f(x^{(i)}; \theta), y^{(i)}) both 1st and 2nd moments included
     t \leftarrow t + 1
     Update biased first moment estimate: \mathbf{s} \leftarrow \rho_1 \mathbf{s} + (1 - \rho_1) \mathbf{g}
     Update biased second moment estimate: \mathbf{r} \leftarrow \rho_2 \mathbf{r} + (1 - \rho_2) \mathbf{g} \odot \mathbf{g}
     Correct bias in first moment: \hat{s} \leftarrow \frac{s}{1-\hat{p}_1^t}
                                                              when t is large, the effect of bias correction is small
     Correct bias in second moment: \hat{r} \leftarrow \frac{r}{1-\rho_0^t}
     Compute update: \Delta \boldsymbol{\theta} = -\epsilon \frac{\hat{\boldsymbol{s}}}{\sqrt{\hat{r}} + \delta}
                                                 (operations applied element-wise)
     Apply update: \theta \leftarrow \theta + \Delta \theta
   end while
```

Yao-Liang Yu

Learning rate

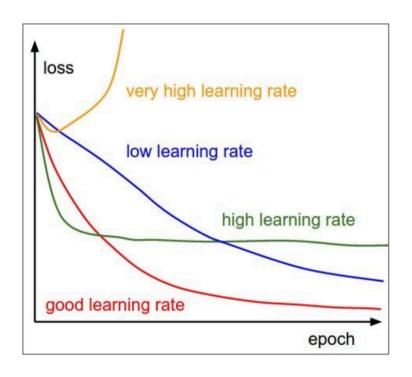
SGD, SGD+Momentum, AdaGrad, RMSProp, Adam all have learning rate as a hyperparameter.

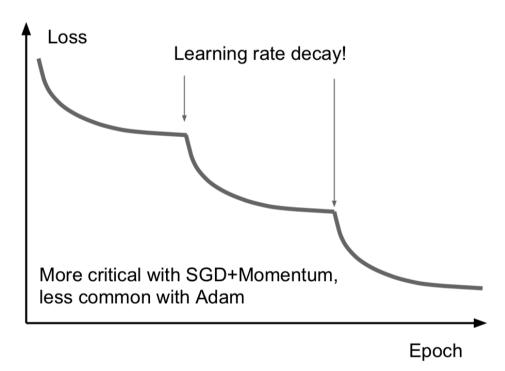
→ Reduce learning rate over time!

- Step decay
 e.g., decrease learning rate by halving every few epochs
- Exponential decay

$$lpha=lpha_0 e^{-kt}$$
 . 1/t decay $lpha=lpha_0/(1+kt)$ t: iteration number

Illustration





Questions?

