.

©
) A
0@*"“”'“@4‘

CS480/680: Intro to ML

Lecture 13: Deep Neural Networks

IIIIIIIIIIII

Yao-Liang Yu

Universality: the dark side

- Only proves the existence of such a NN; how to find it
s another issue (training of NNs)

NP-hard

- May need exponentially many hidden units

- Increase depth may reduce number of hidden units,
significantly

IIIIIIIIIIII

2 06/23/20 Yao-Liang Yu

Backprop for NN

Require: Network depth, [

Require: W@ i€ {1,...,1}, the weight matrices of the model
Require: b® i e {1,...,1}, the bias parameters of the model
Require: x, the input to process

forward f: activation function
Rediyre: o the target output J =L + AQ: training obj.

for k=1,...,ldo
a) = pk) + W (k)p(k-1)
h®) = f(a®)

Pjnd ’f:()ll)' After the forward computation, compute the gradient on the output layer:
y =

J = L(§,y) + 2Q(6) g+« Vg =VyLE,y)

fork=1,l—1,...,1do
Convert the gradient on the layer’s output into a gradient into the pre-
nonlinearity activation (element-wise multiplication if f is element-wise):
g Vond =90 f'(a®)
Compute gradients on weights and biases (including the regularization term,
where needed):
Vemd =g+ AV yx Q(6)
Ve J =g hEDT LAV 60, Q(0)
Propagate the gradients w.r.t. the next lower-level hidden layer’s activations:
g< Vye-1J = wkT g

end for

backward g JiFeRSo

3 06/23/20 Yao-Liang Yu

Sigmoid and tanh

Sigmoid
- Output range (0,1)
» Gradient range (0,1): o(x)(1 — a(x))
- Small gradient at saturated regions
> x =0, gradient = 0.25

> x =10, gradient = 4.5396e-05
> x =-10, gradient = 4.5396e-05

Tanh
- Output range (-1,1)
- Gradient range (0,1): 1 — tanh*(x)
- Small gradient at saturated regions
%) WATERLOO

4 06123120 Yao-Liang Yu @

Vanishing gradients

y=o0 (w4 o (w3 O'(Wz o(wq x))))

41 W3 W3 Wy

« Common weight initialization in (-1, 1)
* Denote input of the i-th () as q;

This leads to vanishing gradients:

ay
T = 0 (as)a(az)
4 ay

ay
3. = 0 (as)wya’(az)alaz) < 7=

oy 0y

ow, = 0'(as)wyo’'(az)wso'(az)o(ar) < = aws

ay

— =o' (ay)wso'(az)wszo’ (azx)wyo'(a)x < —

ow awz UNIVERSITY OF
2> WATERLOO

5 06/23/20 Yao-Liang Yu

Avoiding vanishing gradients

- Proper initialization of network parameters

« Choose activation functions that do not saturate

- Use Long Short-Term Memory (LSTM) or Gated
Recurrent Unit (GRU) architectures.

IIIIIIIIIIII

6 06/23/20 Yao-Liang Yu

More activations

10,

- Leaky RelLU
F(t) = max{0.1¢, t}

« ELU

IIIIIIIIIIII

7 06/23/20 Yao-Liang Yu

RelLU, Leaky RelLU, and ELU

RelLU

- Computationally efficient

« Grac
 Grac
>

lent =1 when x> 0
ient = 0 when x<0 (cannot update parameter)
nitialize ReLU units with slightly positive values, e.g., 0.01

> Try other activation functions, e.g., Leaky ReLU

Leaky ReLU
- Computationally efficient
- Constant gradient for both x>0 and x<0

ELU

- Small gradient at negative saturation region

8 06/23/20

UNIVERSITY OF

WATERLOO

Yao-Liang Yu

- Sigmoid and tanh functions are sometimes avoided
due to the vanishing/exploding gradients

- Use RelLU as a default choice

- Explore other activation functions, e.g., Leaky ReLU
and ELU, if ReLU results in dead hidden units

IIIIIIIIIIII

9 06/23/20 Yao-Liang Yu

Overfitting and regularization

« High capacity increases risk of overfitting
> # of parameters is often larger than # of data

« Regularization: modification we make to a learning
algorithm that is intended to reduce its generalization error
but not its training error

> Parameter norm penalties (e.g., L1 and L2 norms)
> Bagging

> Dropout

> Data augmentation

> Early stopping

> ...

IIIIIIIII

10 06/23/20 Yao-Liang Yu

For each training example keep hidden units with probability p.
- A different and random network for each training example
- A smaller network with less capacity

X
1‘ Q Q “ e.g., let p = 0.5 for all hidden layers
0 0 Q O
Q n co
w0

delete ingoing and outgoing links for eliminated hidden units

WATERLOO

11 06123120 Yao-Liang Yu <Y

Implementation

Consider implementing dropout in layer 1.

- Denote output of layer 1 as h with dimension 4*1
- Generate a 4*1 vector d with elements 0 or 1 indicating

W
o U

nether units are kept or not
pdate h by multiplying h and d element-wise

.

12

pdate h by h/p (“inverted dropout”)

IIIIIIIIIIII

06/23/20 Yao-Liang Yu

Inverted dropout

Motivation: keep the mean value of output unchanged

Example: Consider h(1) in the previous slide. RV is
used as the input to layer 2. Let p = 0.8.

722 = wW@RD 1 p@
» 20% of hidden units in layer 1 are eliminated

- Without “inverted dropout”, the mean of z(?) would be
decreased by 20% roughly

IIIIIIIIIIII

13 06/23/20 Yao-Liang Yu

Training
- Use (“inverted”) dropout for each training example

Prediction
- Usually do not use dropout

- If “inverted dropout” is used in training, no further
scaling is needed in testing

IIIIIIIIIIII

14 06/23/20 Yao-Liang Yu

Why does it work?

Intuition: Since each hidden unit can disappear with some
probability, the network cannot rely on any particular
units and have to spread out the weights

> similar to L2 regularization P
o ®
© "
2 .9

Another interpretation:

Dropout is training a large ensemble of models sharing
parameters

IIIIIIIIIIII

15 06/23/20 Yao-Liang Yu

Hyperparameter p

p. probability of keeping units

How to design p?
- Keep p the same for all layers

- Or, design p for each layer: set a lower p for overfitting
layers, I.e., layers with a large number of units

- Can also design p for the input, but usually set p =1 or
very close to 1

IIIIIIIIIIII

16 06/23/20 Yao-Liang Yu

Data augmentation

The best way to improve generalization is to have more
training data. But often, data is limited.

One solution: create fake data, e.g., transform input
Example: object recognition (classification)
- Horizontal/vertical flip
- Rotation
- Stretching

17 06/23/20 Yao-Liang Yu

Early stopping

For models with large capacity,
- fraining error decreases steadily
- validation error first decreases then increases

0.20

!
+— Training set loss

T T
0.15H —— Validation set loss
0.10 }4 -
0.00 |

0 50 100 150 200 250
Time (epochs)

Loss (negative log-likelihood)

UNIVERSITY OF
18 06/23/20 Yao-Liang Yu @ WATERLOO

Batch normalization (BN)

Use BN for each dimension in hidden layers, either before
activation function or after

AAdA
Input: Values of = over a mini-batch: B = {z1__,,};
Parameters to be learned: v, /3 N X
Olltpllt: {yz B BN%B(.’IZi)}
e Yvy
UB — — T; // mini-batch mean
s 5
0% % Z(wz — us)? // mini-batch variance h(g) — f3 (W(g) h(2) + b(g))
i=1
- 3
T; % // normalize | Z() - .
Yi < V& + B = BN, 3(z:) scaleand shitt| €lther apply BN to z*) or h

y and 8 are optimization variables; not hyperparametess,.qsirv o
WATERLOO

19 06/23/20 Yao-Liang Yu

Why BN? (1)

Consider applying BN to z (i.e., before activation)
e z 2 mean f3, variance y 2
 Robust to parameter changes in previous layers
* Independent learning of each layer

X2 57

\ apply BN

Without BN, layer 2 depends on output of layer 1 hence params of layer 1
With BN, mean and variance of z(® unchanged

WATERLOO

20 06123120 Yao-Liang Yu <Y

Why BN? (2)

Assume the orders of features in hidden layers are
significantly different

- E.g., feature 1: 1; feature 2: 10° ; feature 3: 103
- With BN, features are of similar scale
- Speed up learning

IIIIIIIIIIII

21 06/23/20 Yao-Liang Yu

Why BN? (3)

BN has a slight regularization effect (not intended)

 Each mini-batch is scaled by the mean/variance
computed on that mini-batch

* This adds some noise to z and to each layer's
activations

IIIIIIIIIIII

22 06/23/20 Yao-Liang Yu

Optimization

Problem of SGD: slow convergence

SGD + momentum

B IS

v+ av+(1-— a)g exponentially weighted averages
O — 0 —cv
« Accumulate an exponentially decaying moving average of past gradients

« Hyperparameter a determines how quickly the contributions of previous
gradients exponentially decay (a = 0.9 usually works well)

WATERLOO

23 06123120 Yao-Liang Yu <Y

Exponentially weighted averages

Llet vi=avy_1+(1—a)g;; a=09

vi100 = 0.1g100 + 0.1 % 0.9g99 + 0.1 ¥ 0.9%ggg + - - - + 0.1 % 0.9%9g,

\ J
|

total weight: 1 — at (close to 1 if t is large)

UNIVERSITY OF

WATERLOO

24 06/23/20 Yao-Liang Yu

llustration

1

-30 =20 =10 O 10 20

Contour of loss function
 red: SGD + momentum
 black: SGD

WATERLOO

25 06/23/20 Yao-Liang Yu

RMSProp (root mean square propagation)

- Greater progress in the more gently sloped directions
- One of the go-to optimization methods for deep learning

Algorithm 8.5 The RMSProp algorithm

Require: Global learning rate €, decay rate p
Require: Initial parameter 6
Require: Small constant §, usually 107, used to stabilize division by small
numbers
Initialize accumulation variables r = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {.'1:(1) oo ,w(m)} with
corresponding targets y(i). " "
Compute gradient: g + 2V, Y. L(f(x'9;0),y"). - :
Accumulate squared gradient: 7 ¢ fm_(“a _)p)g ()Dg. discard history from extreme past

Compute parameter update: Af = c- ©g. (—=—= applied element-wise)

vorr 29 e

Apply update: 8 < 6 + A6.
end while

WATERLG

26 06/23/20 Yao-Liang Yu

Adam (adaptive moments)

A variant combining of RMSProp and momentum

Algorithm 8.7 The Adam algorithm

Require: Step size € (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, p; and ps in [0,1).
(Suggested defaults: 0.9 and 0.999 respectively)
Require: Small constant § used for numerical stabilization (Suggested default:
107%)
Require: Initial parameters 6
Initialize 1st and 2nd moment variables s =0, r =0
Initialize time step £t = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {z(1),..., (™)} with
corresponding targets y (@),
Compute gradient: g 5,vo 3%, L(f(=":6).3%) hoth 1st and 2nd moments included
t+t+
Update biased first moment estimate: s < p1 8+ (1 — p1)g
Update biased second moment estimate: 7 < por + (1 — p2)g© g
Correct bias in first moment: § < 1T8p§'

o X when tis large, the effect of bias correction is small
Correct bias in second moment: 7 + 1+pg

. _ 3 . . o
Compute update: A@ = € Tirs (operations applied element-wise)
Apply update: 6 «+ 6 + A6

end while

UNIVERSITY OF
27 06/23/20 Yao-Liang Yu @ WATERLOO

SGD, SGD+Momentum, AdaGrad, RMSProp, Adam all have
learning rate as a hyperparameter.

->Reduce learning rate over time!

- Step decay
e.g., decrease learning rate by halving every few epochs

- Exponential decay

0 — aoe_kt

\ t: iteration number
a=ay/(1+ kt)/
%) WATERLSO

28 06123120 Yao-Liang Yu @

- 1/t decay

llustration

loss

Learning rate decay!

very high learning rate

low learning rate

high learning rate

More critical with SGD+Momentum,
less common with Adam

good learning rate

Epoch

WATERLG

29 06/23/20 Yao-Liang Yu

Questions?

IIIIIIIIIIII

30 06/23/20 Yao-Liang Yu

