
CS480/680: Intro to ML
Lecture 14: Convolutional Neural Networks (CNNs)

2020-06-25 Yaoliang Yu1
some slides are adapted from Stanford cs231n course slides

Convolut ion

2020-06-25 Yaoliang Yu2

• Continuous case

• Discrete case

y(i) =

Z
x(t)w(i� t)dt

y(i) =
1X

t=�1
x(t)w(i� t)

y(i) = (x ⇤ w)(t)

Convolut ions for feature extract ion

• In neural networks, a convolution denotes the linear
combination of a subset of units based on a specific
pattern of weights

• Convolutions are often combined with an activation
function to produce a feature

2020-06-25 Yaoliang Yu3

zj =
X

i

wjihi

hj = f(zj) = f

X

i

wjihi

!

Recap: MLPs

• Hidden unit is fully connected to all units in the previous layer
• Units in a hidden layer do not share any connections
• MLPs do not scale well to full images

Ø E.g., consider an image with the size 200x200x3. Then each hidden
unit in layer 1 would have 200*200*3 = 120,000 weights

Ø Huge number of parameters would lead to overfitting

2020-06-25 Yaoliang Yu4

MLP

Convolut ional neural networks (CNNs)

• CNNs are primarily used in the field of pattern
recognition with images, which aim to exploit the strong
spatially local correlation present in natural images

• Instead of using fully connected weights, a
convolutional layer has kernels (or filters) that are only
connected to a small region of the previous layer via dot
products (similar to discrete convolutional operator)

• Each filter can be thought of as a feature identifier
2020-06-25 Yaoliang Yu5

Input/output dimension

Consider the input as images.

• Units are arranged in 3 dimensions

Ø Width, height, and depth
Ø For classification problem, the final output layer would have

dimensions 1x1xC for class scores, where C is the number
of classes

2020-06-25 Yaoliang Yu6

Layers in CNNs

• Fully-connected layer (FC)
Ø Each unit in this layer is connected to all units in the

previous layer.

• Convolutional layer (Conv)

• Pooling layer

2020-06-25 Yaoliang Yu7

Conv layers: f i l ter

Include a set of filters

• Local connectivity: The connections are local in space
(along width and height), but always full along the entire
depth of the input volume

• Hyperparameter: receptive field of unit (or filter size)

2020-06-25 Yaoliang Yu8

2020-06-25 Yaoliang Yu9

Main idea 1: restricted receptive field

2020-06-25 Yaoliang Yu10

Main idea 2: weight sharing

2020-06-25 Yaoliang Yu11

2020-06-25 Yaoliang Yu12

2020-06-25 Yaoliang Yu13

2020-06-25 Yaoliang Yu14

Conv layers: output

Three hyperparameters control the output size

• Depth: the number of filters (determine the depth of output)

• Stride: how to slide the filters
Ø Stride = 1: move the filters 1 pixel at a time
Ø Stride = 2: move the filters 2 pixels at a time

• Zero-padding: pad the input with zeros around the
border
Ø Allow us to control the spatial size of the output (most commonly we

preserve the spatial size of the input)

2020-06-25 Yaoliang Yu15

Example

The input volume has size 32x32x3, (e.g. an RGB CIFAR-
10 image). If the filter size is 5x5, then how many weights
does each unit in the Conv layer have?

2020-06-25 Yaoliang Yu16

Spatial size of output

Spatial size: (W+2P-F)/S+1 (output should be an integer)
• W: the input size (width or height; assume they have the same dimension)
• F: the filter size (width or height; assume they have the same dimension)
• P: the amount of zero padding used on the border
• S: stride

In general, set P=(F−1)/2 when S=1 to make sure that the input
and output have the same spatial size

2020-06-25 Yaoliang Yu17

Spatial size: 2-D examples

• For a 7x7 input and a 3x3 filter with stride 1 and pad 0,
what is the spatial size of the output? With stride 2?

2020-06-25 Yaoliang Yu18

Convolut ions on 3-D

2020-06-25 Yaoliang Yu19

1st layer convolves with red
2nd layer convolves with green
3rd layer convolves with blue

× 1

The convolution operation essentially performs dot products
between the filters and local regions of the input

Output size: 3-D examples

• Consider the input size as 227x227x3. In the first conv
layer, use 96 filters each with the size F=11, stride S=4
and no zero-padding P=0. What is the output size of this
conv layer?

2020-06-25 Yaoliang Yu20

Parameter sharing

• Motivation: control the number of parameters
Ø Use the previous example. Consider 55*55*96 = 290,400 units in the

first conv layer, and each has 11*11*3 = 363 weights and 1 bias. In
total, 290400 * 364 = 105,705,600 parameters in the first layer.

• Idea: constrain the units in each depth slice to use the
same weights and bias.
Ø With parameter sharing, the first conv layer would now have only 96

unique set of weights (one for each depth slice). In total, 96*11*11*3 +
96 = 34,944 parameters.

2020-06-25 Yaoliang Yu21

I l lustrat ion

2020-06-25 Yaoliang Yu22

stride = 2

Summary of Conv layer

2020-06-25 Yaoliang Yu23

Difference between FC and Conv layers
Ø Units in the Conv layer are connected only to a local region in the input
Ø Units in the Conv layer share parameters

Pooling layers

• Idea: perform a down-sampling operation along the
spatial dimensions (width and height)
Ø Reduce the amount of parameters and computation in the network
Ø Control overfitting

• Common operations
Ø Max-pooling (most popular): e.g., use max-pooling with 2x2 filter size

(i.e. F=2), and with stride of 2 (i.e. S=2)
Ø Average pooling
Ø L2-norm pooling

2020-06-25 Yaoliang Yu24

Summary of pool ing layer

2020-06-25 Yaoliang Yu25

Example

Consider the input size as 55*55*96. This input is fed to a
pooling layer with 3*3 filters and a stride of 2. What is the
output size of this pooling layer? How many parameters in
this layer?

2020-06-25 Yaoliang Yu26

ConvNet architecture

Several famous architectures:
LeNet, AlexNet, ZFNet, GoogLeNet, VGGNet, ResNet, etc.

Try different network structures and find one that suits your problem

2020-06-25 Yaoliang Yu27

Input Conv à ReLu Pooling FC à ReLu FC

Repeat

Repeat

Repeat

LeNet

2020-06-25 Yaoliang Yu28

AlexNet

2020-06-25 Yaoliang Yu29

VGGNet

2020-06-25 Yaoliang Yu30

receptive field: 7 x 7
params/comp: O(7*7)

7x7-conv
receptive field: 7 x 7
params/comp: O(3*3*3)

3x3-conv, x3

receptive field: number of input pixels each final output unit can “see”

Compare: nxn-conv vs 1xn-conv followed by nx1-conv
receptive field? parameters? computation?

VGGNet

2020-06-25 Yaoliang Yu31

GoogLeNet

2020-06-25 Yaoliang Yu32

GoogLeNet

2020-06-25 Yaoliang Yu33

m x n x c
1 x 1 x c x d --> m x n x d

3 x 3 x d x k
O(mncd + 9mndk)

1x1 conv first, 3x3 conv second
m x n x c
3 x 3 x c x d --> m x n x d

1 x 1 x d x k
O(9mncd + mndk)

3x3 conv first, 1x1 conv second
m x n x c
3 x 3 x c x k --> m x n x k

O(9mnck)

naïve 3x3 conv

output dim k > intermediate dim d input dim c > output dim k

GoogLeNet

2020-06-25 Yaoliang Yu34

m x n x c
3 x 3 x c --> m/3 x n/3 x c

1 x 1 x c x k
O(mnc + mnck/9)

3x3 pool first, 1x1 conv second
m x n x c
1 x 1 x c x k --> m x n x k

3 x 3 x k
O(mnck + mnk)

1x1 conv first, 3x3 pool second

GoogLeNet

2020-06-25 Yaoliang Yu35

• Deeper but more efficient

• No FC layers

• Better performance

Case studies: ResNet

Fact: deeper models are harder to optimize
(e.g., gradient vanishing and exploding)

2020-06-25 Yaoliang Yu36

increasing network depth leads to worse performance in reality

Solut ion

2020-06-25 Yaoliang Yu37

Add an ``identity shortcut connection’’ that skips one or more layers

Conv ReLu Conv ReLuh(l) h(l+2)

a residual block

ResNet: very deep networks using residual blocks
• Can support up to hundreds or even thousands of layers and still achieve

compelling performance
• Swept all classification/detection competitions in ILSVRC’15 and COCO’15

I l lustrat ion

2020-06-25 Yaoliang Yu38

Questions?

2020-06-25 Yaoliang Yu39

