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Convolut ion
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• Continuous case

• Discrete case
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Convolut ions for feature extract ion

• In neural networks, a convolution denotes the linear 
combination of a subset of units based on a specific 
pattern of weights

• Convolutions are often combined with an activation 
function to produce a feature 

2020-06-25 Yaoliang Yu3

zj =
X

i

wjihi

hj = f(zj) = f

 
X

i

wjihi

!



Recap: MLPs

• Hidden unit is fully connected to all units in the previous layer
• Units in a hidden layer do not share any connections 
• MLPs do not scale well to full images

Ø E.g., consider an image with the size 200x200x3. Then each hidden 
unit in layer 1 would have 200*200*3 = 120,000 weights

Ø Huge number of parameters would lead to overfitting
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MLP



Convolut ional neural networks (CNNs)

• CNNs are primarily used in the field of pattern 
recognition with images, which aim to exploit the strong 
spatially local correlation present in natural images

• Instead of using fully connected weights, a 
convolutional layer has kernels (or filters) that are only 
connected to a small region of the previous layer via dot 
products (similar to discrete convolutional operator)

• Each filter can be thought of as a feature identifier
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Input/output dimension 

Consider the input as images.

• Units are arranged in 3 dimensions

Ø Width, height, and depth
Ø For classification problem, the final output layer would have 

dimensions 1x1xC for class scores, where C is the number 
of classes

2020-06-25 Yaoliang Yu6



Layers in CNNs

• Fully-connected layer (FC)
Ø Each unit in this layer is connected to all units in the 

previous layer.

• Convolutional layer (Conv)

• Pooling layer
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Conv layers: f i l ter

Include a set of filters

• Local connectivity: The connections are local in space 
(along width and height), but always full along the entire 
depth of the input volume

• Hyperparameter: receptive field of unit (or filter size)
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Main idea 1: restricted receptive field
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Main idea 2: weight sharing
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Conv layers: output

Three hyperparameters control the output size

• Depth: the number of filters  (determine the depth of output)

• Stride: how to slide the filters
Ø Stride = 1:  move the filters 1 pixel at a time
Ø Stride = 2:  move the filters 2 pixels at a time 

• Zero-padding: pad the input with zeros around the 
border
Ø Allow us to control the spatial size of the output (most commonly we 

preserve the spatial size of the input)
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Example

The input volume has size 32x32x3, (e.g. an RGB CIFAR-
10 image). If the filter size is 5x5, then how many weights 
does each unit in the Conv layer have? 
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Spatial size of output

Spatial size:  (W+2P-F)/S+1 (output should be an integer)
• W: the input size (width or height; assume they have the same dimension)
• F: the filter size (width or height; assume they have the same dimension)
• P: the amount of zero padding used on the border
• S: stride

In general, set P=(F−1)/2 when S=1 to make sure that the input 
and output have the same spatial size
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Spatial size: 2-D examples

• For a 7x7 input and a 3x3 filter with stride 1 and pad 0, 
what is the spatial size of the output? With stride 2?
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Convolut ions on 3-D
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1st layer convolves with red
2nd layer convolves with green
3rd layer convolves with blue

× 1

The convolution operation essentially performs dot products
between the filters and local regions of the input



Output size: 3-D examples

• Consider the input size as 227x227x3. In the first conv
layer, use 96 filters each with the size F=11, stride S=4 
and no zero-padding P=0. What is the output size of this 
conv layer?
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Parameter sharing

• Motivation: control the number of parameters
Ø Use the previous example. Consider 55*55*96 = 290,400 units in the 

first conv layer, and each has 11*11*3 = 363 weights and 1 bias. In 
total, 290400 * 364 = 105,705,600 parameters in the first layer.

• Idea:  constrain the units in each depth slice to use the 
same weights and bias. 
Ø With parameter sharing, the first conv layer would now have only 96 

unique set of weights (one for each depth slice). In total, 96*11*11*3 + 
96 = 34,944 parameters.
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I l lustrat ion
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stride = 2



Summary of Conv layer
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Difference between FC and Conv layers
Ø Units in the Conv layer are connected only to a local region in the input 
Ø Units in the Conv layer share parameters



Pooling layers

• Idea: perform a down-sampling operation along the 
spatial dimensions (width and height)
Ø Reduce the amount of parameters and computation in the network
Ø Control overfitting

• Common operations
Ø Max-pooling (most popular): e.g., use max-pooling with 2x2 filter size 

(i.e. F=2), and with stride of 2 (i.e. S=2)
Ø Average pooling
Ø L2-norm pooling
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Summary of pool ing layer
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Example

Consider the input size as 55*55*96. This input is fed to a 
pooling layer with 3*3 filters and a stride of 2. What is the 
output size of this pooling layer? How many parameters in 
this layer?
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ConvNet architecture

Several famous architectures: 
LeNet, AlexNet, ZFNet, GoogLeNet, VGGNet, ResNet, etc.

Try different network structures and find one that suits your problem
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Input Conv à ReLu Pooling FC à ReLu FC

Repeat

Repeat

Repeat



LeNet
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AlexNet
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VGGNet
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receptive field: 7 x 7
params/comp: O(7*7)

7x7-conv
receptive field: 7 x 7
params/comp: O(3*3*3)

3x3-conv, x3

receptive field: number of input pixels each final output unit can “see” 

Compare: nxn-conv vs 1xn-conv followed by nx1-conv
receptive field? parameters? computation?



VGGNet
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GoogLeNet
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GoogLeNet
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m x n x c
1  x 1 x c x d  -->  m x n x d

3 x 3 x d x k
O(mncd + 9mndk)

1x1 conv first, 3x3 conv second
m x n x c 
3  x 3 x c x d   -->   m x n x d

1 x 1 x d x k
O(9mncd + mndk)

3x3 conv first, 1x1 conv second
m x n x c 
3  x 3 x c x k   -->   m x n x k

O(9mnck)

naïve 3x3 conv

output dim k > intermediate dim d input dim c > output dim k



GoogLeNet
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m x n x c
3 x 3 x c  -->  m/3 x n/3 x c

1  x  1   x c x k
O(mnc + mnck/9)

3x3 pool first, 1x1 conv second
m x n x c 
1 x 1 x c x k   -->   m x n x k

3 x 3 x k
O(mnck + mnk)

1x1 conv first, 3x3 pool second



GoogLeNet
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• Deeper but more efficient

• No FC layers

• Better performance



Case studies: ResNet

Fact: deeper models are harder to optimize 
(e.g., gradient vanishing and exploding)
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increasing network depth leads to worse performance in reality



Solut ion
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Add an ``identity shortcut connection’’ that skips one or more layers

Conv ReLu Conv ReLuh(l) h(l+2)

a residual block

ResNet: very deep networks using residual blocks
• Can support up to hundreds or even thousands of layers and still achieve 

compelling performance
• Swept all classification/detection competitions in ILSVRC’15 and COCO’15



I l lustrat ion
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Questions?
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