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16 Mixture Models
Goal

Mixture models for density estimation and the celebrated expectation-maximization algorithm.

Alert 16.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 16.2: Density estimation

The central problem of this note is to estimate a density function (or more generally a probability measure),
through a finite training sample. Formally, we are interested in estimating a probability measure χ from a
(non)parametric family {χθ}θ∈Θ. A typical approach is to minimize some statistical divergence between a
noisy version χ̂ and χθ:

inf
θ∈Θ

D(χ̂‖χθ).

However, the minimization problem above may not always be easy to solve, and alternative (indirect) strategies
have been developed. As mentioned in Remark 4.20, choosing the KL divergence corresponds to the maximum
likelihood estimation procedure.

Algorithm 16.3: Expectation-Maximization (EM) (Dempster et al. 1977)

We formulate EM under the density estimation formulation in Definition 16.2, except that we carry out the
procedure in a lifted space X×Z where Z is the space that some latent random variable Z lives in. Importantly,
we do not observe the latent variable Z: it is “artificially” constructed to aid our job. We fit our model with
a prescribed family of joint distributions

µθ(dx,dz) = ζθ(dz)Dθ(dx|z) = χθ(dx)Eθ(dz|x), θ ∈ Θ.

In EM, we typically specify the joint distribution µθ explicitly, and in a way that the posterior distribution
Eθ(dz|x) can be easily computed. Similarly, we “lift” χ(dx) (our target of estimation) to the joint distribution

ν̂(dx,dz) = χ̂(dx)E(dz|x).

(We use the hat notation to remind that we do not really have access to the true distribution χ but a sample
from it, represented by the empirical distribution χ̂.) Then, we minimize the discrepancy between the joint
distributions ν̂ and µθ, which is an upper bound of the discrepancy of the marginals KL(χ̂‖χθ) (Exercise 4.17):

inf
θ∈Θ

inf
E(dz|x)

KL(ν̂(dx,dz)‖µθ(dx,dz)).

Note that there is no restriction on E (and do not confuse it with Eθ, which is “prescribed”).
The EM algorithm proceeds with alternating minimization:

• (E-step) Fix θt, we solve Et+1 by (recall Exercise 4.17)

inf
E

KL(ν̂(dx,dz)‖µθt(dx,dz)) = KL(χ̂‖χθt)+Eχ̂KL(E‖Eθt),

which leads to the “closed-form” solution:

Et+1 = Eθt .
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• (M-step) Fix Et+1, we solve θt+1 by

inf
θ∈Θ

KL(ν̂t+1(dx,dz)‖µθ(dx,dz)) = KL(χ̂‖χθ)︸ ︷︷ ︸
likelihood

+Eχ̂KL(Et+1‖Eθ)︸ ︷︷ ︸
regularizer

.

For the generalized EM algorithm, we need only decrease the above (joint) KL divergence if finding a
(local) minima is expensive. It may be counter-intuitive that minimizing the sum of two terms above
can be easier than minimizing the first likelihood term only!

Obviously, the EM algorithm monotonically decreases our (joint) KL divergence KL(ν̂, µθ). Moreover, thanks
to construction, the EM algorithm also ascends the likelihood:

KL(χ̂‖χθt+1) ≤ KL(ν̂t+1‖µθt+1) ≤ KL(ν̂t+1‖µθt) = KL(χ̂‖χθt).

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). “Maximum Likelihood from Incomplete Data via the EM
Algorithm”. Journal of the Royal Statistical Society. Series B (Methodological), vol. 39, no. 1, pp. 1–38.

Definition 16.4: Exponential family distribution

The exponential family distributions have the following density form:

p(x) = h(x) exp
(
〈η, T (x)〉 −A(η)

)
,

where T (x) is the sufficient statistics, η is the natural parameter, A is the log-partition function, and h
represents the base measure. Since p integrates to 1, we have

A(η) = log

∫
exp

(
〈η, T (x)〉

)
· h(x) dx

We verify that A is a convex function. (The cleanest way is perhaps through one of the rules in Exercise 3.13.)

Example 16.5: Gaussian distribution in exponential family

Recall from Example 4.7 that the multivariate Gaussian density is:

p(x) = (2π)−d/2[det(Σ)]−1/2 exp
(
− 1

2 (x− µ)>Σ−1(x− µ)
)

= exp

(〈[
x

− 1
2xx

>

]
,

[
Σ−1µ
Σ−1

]〉
− 1

2 (µ>Σ−1µ+ d log(2π) + log det Σ)

)
.

Thus, we identify

T (x) = (x,− 1
2xx

>)

η = (Σ−1µ,Σ−1) =: (ξ, S)

A(µ,Σ) = 1
2 (µ>Σ−1µ+ d log(2π) + log det Σ)

A(η) = A(ξ, S) = 1
2 (ξ>S−1ξ + d log(2π)− log detS).

Example 16.6: Bernoulli and Multinoulli in exponential family

The Bernoulli distribution is given as:

p(z) = πz(1− π)1−z = exp (z log π + (1− z) log(1− π))
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= exp(z log π
1−π + log(1− π)).

Thus, we may identify

T (z) = z

η = log π
1−π

A(η) = log(1 + exp(η)).

We can also consider the multinoulli distribution:

p(z) =

c∏
k=1

πzkk = exp (〈z, logπ〉)

= exp
(
z̃> log π̃

1−〈1,π̃〉 + log(1− 〈1, π̃〉)
)
,

where recall that z ∈ {0, 1}c is one-hot (i.e. 1>z = 1), and we use the tilde notation to denote the subvector
with the last entry removed. Thus, we may identify

T (z̃) = z̃

η̃ = log π̃
1−〈1,π̃〉

A(η̃) = log(1 + 〈1, exp(η̃)〉).

(Here, we use the tilde quantities to remove one redundancy since 1>z = 1>π = 1).

Exercise 16.7: Mean parameter and moments

Prove that for the exponential family distribution,

∇A(η) = E[T (X)]

∇2A(η) = E[T (X) · T (X)>]− E[T (X)] · E[T (X)]> = Cov(T (X)),

where the last equality confirms again that the log-partition function A is convex (since the covariance matrix
is positive semidefinite).

Exercise 16.8: Marginal, conditional and product of exponential family

Let p(x, z) be a joint distribution from the exponential family. Prove the following:

• The marginal p(x) need not be from the exponential family.

• The conditional p(z|x) is again from the exponential family.

• The product of two exponential family distributions is again in exponential family.

Exercise 16.9: Exponential family approximation under KL

Let p(x) be an arbitrary distribution and qη(x) from the exponential family with sufficient statistics T and
log-partition function A. Then,

η∗ := argmin
η

KL(p‖qη)

is given by moment-matching:

EpT (X) = EqηT (X) = ∇A(η), i.e., η = ∇A−1(EpT (X)).
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Exercise 16.10: EM for exponential family

Prove that the M-step of EM simplifies to the following, if we assume the joint distribution µη is from the
exponential family with natural parameter η, sufficient statistics T and log-partition function A:

ηt+1 = ∇A−1(Eν̂t+1
(T (X))).

Definition 16.11: Mixture Distribution

We define the joint distribution over a discrete latent random variable Z ∈ {1, . . . , c} and an observed random
variable X:

p(x, z) =

c∏
k=1

[πk · pk(x; θk)]zk ,

where we represent z using one-hot encoding. We easily obtain the marginal and conditional:

p(x) =

c∑
k=1

πk · pk(x; θk) (16.1)

p(z = ek) = πk

p(x|z = ek) = pk(x; θk)

p(z = ek|x) =
πk · pk(x; θk)∑c
j=1 πj · pj(x; θj)

.

The marginal distribution p(x) can be interpreted as follows: There are c component densities pk. We choose
a component pk with probability πk and then we sample x from the resulting component density. However, in
reality we do not know which component density an observation x is sampled from, i.e., the discrete random
variable Z is not observed (missing).

Let pk(x; θk) be multivariate Gaussian (with θk denoting its mean and covariance) we get the popular
Gaussian mixture model (GMM).

Algorithm 16.12: Mixture density estimation – ML

Replacing the parameterization χθ with the mixture model in (16.1) we get a direct method for estimating
the density function χ based on a sample:

min
π∈∆,θ∈Θ

KL(χ̂‖p), p(x) =

c∑
k=1

πk · pk(x; θk)

where ∆ denotes the simplex constraint (i.e., π ≥ 0 and 1>π = 1). The number of components c is a
hyperparameter that needs to be determined a priori. We may apply (projected) gradient descent to solve π
and θ. However, it is easy to verify that the objective function is nonconvex hence convergence to a reasonable
solution may not be guaranteed.

We record the gradient here for later comparison. We use pW (x, z) for the joint density whose marginal-
ization over the latent z gives p(x). For mixtures, the parameter W includes both π and θ.

∂

∂W
= −Ep̂W (z,x)

∂ log pW (x, z)

∂W
, where p̂W (z,x) := χ̂(dx) · pW (z|x).
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Algorithm 16.13: Mixture density estimation – EM

Let us now apply the EM Algorithm 16.3 to the mixture density estimation problem. As mentioned before,
we minimize the upper bound:

min
π∈∆,θ∈Θ

min
E

KL(ν̂(x, z)‖p(x, z)), ν̂(x, z) = χ̂(x)E(z|x), p(x, z) =

c∏
k=1

[πk · pk(x; θk)]zk ,

with the following two steps alternated until convergence:

• E-step: Fix π(t) and θ(t), we solve

Et+1 = p(t)(z = ek|x) =
π

(t)
k · pk(x; θ

(t)
k )∑c

j=1 π
(t)
j · pj(x; θ

(t)
j )

=: r
(t+1)
k (x). (16.2)

• M-step: Fix Et+1 hence ν̂t+1, we solve

min
π∈∆

min
θ∈Θ

KL(ν̂t+1(x, z)‖p(x, z)) ≡ max
π∈∆

max
θ∈Θ

Eχ̂EEt+1
[〈z, logπ〉+ 〈z, logp(X;θ)〉]

= max
π∈∆

max
θ∈Θ

Eχ̂
[〈

r(t+1)(X), logπ
〉

+
〈
r(t+1)(X), logp(X;θ)

〉]
.

It is clear that the optimal

π(t+1) = Eχ̂r
(t+1)(X) =

n∑
i=1

χ̂(xi) · r(k+1)(xi). (16.3)

(For us the empirical training distribution χ̂ ≡ 1
n , although we prefer to keep everything abstract and

general.)

The θk’s can be solved independently:

max
θk∈Θk

Eχ̂
[
r

(t+1)
k (X) · log pk(X; θk)

]
≡ min

θk∈Θk
KL(χ̂

(t+1)
k ‖pk(·; θk)), (16.4)

where we define χ̂(t+1)
k ∝ χ̂·r(t+1)

k . (This is similar to Adaboost, where we reweigh the training examples!)

If we choose the component density pk(x; θk) from the exponential family with sufficient statistics Tk and
log-partition function Ak, then from Exercise 16.9 we know (16.4) can be solved in closed-form:

θ
(t+1)
k = ∇A−1

k

[
E
χ̂
(t+1)
k

Tk(X)
]

(16.5)

Alert 16.14: implicit EM vs. explicit ML

We now make an important connection between EM and ML. We follow the notation in Algorithm 16.12. For
the joint density pW (x, z), EM solves

Wt+1 = argmin
W

KL(p̂t+1‖pW ), where p̂t+1(x, z) := p̂Wt
(x, z) = χ̂(dx) · pWt

(z|x).

In particular, at a minimizer Wt+1 the gradient vanishes:

−Ep̂t+1

∂ log pW (x, z)

∂W
= 0.

In other words, EM solves the above nonlinear equation (in W ) to get Wt+1 while ML with gradient descent
simply performs one fixed-point iteration.
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Example 16.15: Gaussian Mixture Model (GMM) – EM

Using the results in multivariate Gaussian Example 16.5 we derive:

∇A(η) =

[
S−1ξ

− 1
2 (S−1ξξ>S−1 + S−1)

]
=

[
µ

− 1
2 (µµ> + Σ)

]
,

Eχ̂(t+1)T (X) =

[
Eχ̂(t+1)X

− 1
2Eχ̂(t+1)XX>

]
∝

n∑
i=1

(χ̂ · r(t+1))(xi)

[
xi

− 1
2xix

>
i

]
,

where we have omitted the component subscript k. Thus, from (16.5) we obtain:

µ
(t+1)
k = E

χ̂
(t+1)
k

X =

n∑
i=1

(χ̂ · r(t+1)
k )(xi)∑n

ι=1(χ̂ · r(t+1)
k )(xι)

· xi (16.6)

Σ
(t+1)
k = E

χ̂
(t+1)
k

XX> − µ(t+1)
k µ

(t+1)
k

>
=

n∑
i=1

(χ̂ · r(t+1)
k )(xi)∑n

ι=1(χ̂ · r(t+1)
k )(xι)

· (xi − µ(t+1)
k )(xi − µ(t+1)

k )>, (16.7)

where we remind that the empirical training distribution χ̂ ≡ 1
n .

The updates on “responsibility” r in (16.2), mixing distribution π in (16.3), on the means µk in (16.6),
and on the covariance matrices Sk in (16.7), consist of the main steps for estimating a GMM using EM.
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