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17 Restricted Boltzmann Machine (RBM)

Goal

Gibbs sampling, Boltzmann Machine and Restricted Boltzmann Machine.

Alert 17.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Algorithm 17.2: The Metropolis-Hastings algorithm (Metropolis et al. 1953; Hastings 1970)

Suppose we want to take a sample from a density p, where direct sampling is costly. Instead, we resort to an
iterative algorithm:

Algorithm: The Metropolis-Hastings Algorithm

Input: proposal (conditional) density q(y|x), symmetric function s(x,y), target density p(x)
Output: approximate sample X ~ p
choose X
repeat

sample Y ~ q(+|X)

(X, Y) ¢+ —mavmxy = 5 Y) 5o B O

P(Y)q(X[Y)

with probability a(X,Y): X+ Y

until until convergence

W N =

o w;

Obviously, the symmetric function s must be chosen so that « € [0,1]. Popular choices include:

e Metropolis-Hastings (Hastings 1970):

p(x)q(y[x) + p(y)a(x|y)
p(x)q(ylx) Vv p(y)a(x[y)

s(x,y) = = a(x,y)=1A (17.1)

e Barker (Barker 1965):

p(y)a(xly)
p(y)a(xly) + p(x)q(y|x)

s(x,y) =1 = alxy) =

The algorithm simplifies considerably if the proposal q is symmetric, i.e. q(x|y) = q(y|x), which is the
original setting in (Metropolis et al. 1953):

Algorithm: The Symmetric Metropolis-Hastings Algorithm

Input: symmetric proposal density q(y|x), symmetric function s(x,y), target density p(x)
Output: approximate sample X ~ p
choose X
repeat
sample Y ~ q(-|X)
X, Y)  s(X,Y) s
with probability a(X,Y): X+ Y
until until convergence

For MH’s rule (17.1), we now have

[~ I NI VU

s(x,y):p—/\—) = a(x,y)zl/\p—
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while Barker’s rule (6) reduces to
P(y)
p(y) +p(x)

In particular, if p(Y) > p(X), then MH always moves to the new position Y while Barker’s rule may still
reject and repeat over.

s(x,y)=1 = a(x,y)=

Hastings, W. Keith (1970). “Monte Carlo sampling methods using Markov chains and their applications”. Biometrika,
vol. 57, pp. 97-109.

Barker, A. A. (1965). “Monte Carlo calculations of the radial distribution functions for a proton-electron plasma’.
Australian Journal of Physics, vol. 18, no. 2, pp. 119-134.

Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953).
“Equation of state calculations by fast computing machines”. Journal of Chemical Physics, vol. 21, pp. 1087-1092.

To appreciate the significance of MH, let us point out that:

e There is immense flexibility in choosing the proposal q!
e We need only know the target density p up to a constant!

Both are crucial for our application to (restricted) Boltzmann machines, as we will see.

Algorithm 17.4: Gibbs sampling (Hastings 1970; Geman and Geman 1984)

If we choose the proposal density q so that q(y|x) # 0 only if the new position y and the original position x
do not differ much (e.g. agree on all but 1 coordinate), then we obtain the so-called Gibbs sampler. Variations
include:

o randomized: randomly choose a (block of) coordinate(s) j in x and change it (them) according to q;.
o cyclic: loop over each (block of) coordinate(s) j in x and change it (them) according to q;.

If we choose q(y|x) = p(y|x), then for MH’s rule v = 1 while for Barker’s rule o = 1.

Hastings, W. Keith (1970). “Monte Carlo sampling methods using Markov chains and their applications”. Biometrika,
vol. 57, pp. 97-109.

Geman, Stuart and Donald Geman (1984). “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration
of Images”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, no. 6, pp. 721-741.

Remark 17.5: Optimality of MH

Peskun (1973) showed that the MH rule is optimal in terms of asymptotic variance.
Peskun, P. H. (1973). “Optimum Monte-Carlo Sampling Using Markov Chains”. Biometrika, vol. 60, no. 3, pp. 607—612.

We say a (discrete) random variable S € {1} follows a Boltzmann distribution p iff there exists a symmetric
matrix W € $™ ! such that

Vs € {£1}™, pw(S =s) =exp(s' Ws— A(W)), where A(W) = log Z exp(s' Ws) (17.2)
se{xl1}™

is the log-partition function. It is clear that Boltzmann distributions belong to the exponential family Defini-

Yaoliang Yu 110 —Version 0.0-July 9, 2020—


https://www.jstor.org/stable/2334940
https://www.publish.csiro.au/ph/pdf/PH650119
https://bayes.wustl.edu/Manual/EquationOfState.pdf
https://www.jstor.org/stable/2334940
https://ieeexplore.ieee.org/document/4767596
https://ieeexplore.ieee.org/document/4767596
http://www.jstor.org/stable/2335011

(CS480/680-Spring 2020 §17 RESTRICTED BOLTZMANN MACHINE (RBM) University of Waterloo

tion 16.4, with sufficient statistics
T(s)=ss'.

We remind that we have appended the constant 1 in s so that W contains the bias term too.

Hopfield, John J. (1982). “Neural networks and physical systems with emergent collective computational abilities”.
Proceedings of the National Academy of Sciences, vol. 79, no. 8, pp. 2554—2558.

We used the encoding {£1} to represent a binary value above. As a consequence, the diagonal entries in W
only contribute a constant (independent of the realization s) in (17.2). Thus, w.l.o.g. we may absorb diag(W)
into A(W) so that diag(W) = 0.

On the other hand, if we use the encoding {0, 1}, while conceptually being equivalent, we will no longer
need to perform padding, since the bias term can now be stored in the diagonal of W.

Despite the innocent form (17.2), Boltzmann distributions are in general intractable (for large m), since
the log-partition function involves summation over 2™ terms (Long and Servedio 2010). This is common in
Bayesian analysis where we know a distribution only up to an intractable normalization constant.

Long, Philip M. and Rocco A. Servedio (2010). “Restricted Boltzmann Machines Are Hard to Approximately Evaluate or
Simulate”. In: Proceedings of the 27th International Conference on International Conference on Machine Learning,
pp. 703-710.

Example 17.9: m=1 reduces to (binary) logistic
For m = 1 we have

exp(2wi2)

S =1) =
Pw ) exp(2w12) + exp(—2wi2

] = sgm(w), where w := 4wy

and recall the sigmoid function sgm(t) = m.

This example confirms that even if we can choose any W, the resulting set of Boltzmann distributions
forms a strict subset of all discrete distributions over the cube {+1}™.

Now let us partition the Boltzmann random variable S into the concatenation of an observed random variable
X € {#1}? and a latent random variable Z € {£1}*. We call the marginal distribution over X a Boltzmann
machine. Note that X no longer belongs to the exponential family!

Given a sample X,...,X,,, we are interested in learning the Boltzmann machine, namely the marginal
density pw (x). We achieve this goal by learning the symmetric matrix W that defines the joint Boltzmann
distribution pw (s) = pw(x,z) in (17.2).

Ackley, David H., Geoffrey E. Hinton, and Terrence J. Sejnowski (1985). “A learning algorithm for boltzmann machines”.

Cognitive Science, vol. 9, no. 1, pp. 147-169.

Hinton, Geoffrey E. and T. J. Sejnowski (1986). “Learning and Relearning in Boltzmann Machines”. In: Parallel Dis-

tributed Processing: Fxplorations in the Microstructure of Cognition. Volume 1: Foundations. Ed. by David E.

Rumelhart, James L. McClelland, and the PDP Research Group. The MIT Press, pp. 282-317.
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Let us consider the partition of the symmetric matrix

W — |:WCE(1? sz} .

W; W,
If we require W,, = 0 and W, = 0, then we obtain the restricted Boltzmann machine:
pw(x,2) x exp (xTsz) , (17.3)

i.e., only cross products are allowed.
Similarly, we will consider learning RBM through estimating the (rectangular) matrix W, € R(¢+Dx(t+1),

Smolensky, Paul (1986). “Information Processing in Dynamical Systems: Foundations of Harmony Theory”. In: Parallel
Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations. The MIT Press,
pp. 194-281.

Example 17.12: m=1,t =1
Let m =1 and ¢ = 1. We have for (R)BM:

p(X =x,7 = 2) x exp (2zxzwi2 + 22w13 + 22ws3)
p(X = ].) X exp (271)12 —+ 2U)13 —+ 2’11}23) —+ exp (—271)12 —+ 2’(1)13 — 2'11)23) s

In general, RBM is a strict subset of BM.

Remark 17.13: Representation power of (R)BM—the power of latent variables

Freund and Haussler (1992) and Neal (1992) are among the first to prove that RBM and BM can approximate
any discrete distribution on {£1}¢ arbitrarily well if the number t of latent variables is large (approaching
24). More refined results appeared later in (Le Roux and Bengio 2008; Le Roux and Bengio 2010; Montiifar
and Ay 2011; Montufar 2014).

In essence, when we marginalize out the latent variables in a (restricted) Boltzmann distribution, we create
a mixture of many components on the remaining variables, hence the ability to approximate any discrete
distribution.

Freund, Yoav and David Haussler (1992). “Unsupervised learning of distributions on binary vectors using two layer
networks”. In: Advances in Neural Information Processing Systems 4. Ed. by J. E. Moody, S. J. Hanson, and R. P.
Lippmann, pp. 912-919.

Neal, Radford M. (1992). “Connectionist learning of belief networks”. Artificial Intelligence, vol. 56, no. 1, pp. 71-113.

Le Roux, Nicolas and Yoshua Bengio (2008). “Representational Power of Restricted Boltzmann Machines and Deep
Belief Networks”. Neural Computation, vol. 20, no. 6, pp. 1631-1649.

(2010). “Deep Belief Networks Are Compact Universal Approximators”. Neural Computation, vol. 22, no. 8, pp. 2192
2207.

Monttfar, Guido and Nihat Ay (2011). “Refinements of Universal Approximation Results for Deep Belief Networks and
Restricted Boltzmann Machines”. Neural Computation, vol. 23, no. 5, pp. 1306-1319.

Montufar, Guido F. (2014). “Universal Approximation Depth and Errors of Narrow Belief Networks with Discrete
Units”. Neural Computation, vol. 26, no. 7, pp. 1386-1407.

Remark 17.14: Computing the gradient

We now apply the same maximum likelihood idea in Algorithm 16.12 for learning an (R)BM:

mv[i/n KL(x(x)||pw (%)) = mmi/n — Eg log {Zﬂ} pw (X, z).
1= t
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Taking derivative w.r.t. W we obtain:

0 X, e
ow XZ pW(sz)

_ —ExZP (g x) 208 Pw (X, 2) 810g pW(X z)

_ _E. ZPW 2/X) O(s WSWA(W))

= —EXZpW z|X)ss' + VA(W).

Denoting pw (x,z) = x(dx)pw (z|x) and applying Exercise 16.7 we obtain the beautiful formula:

8 —
ow
The same result, with the restriction that W,, = 0 and W,, = 0, holds for RBM.

Therefore, we may apply (stochastic) gradient descent to find W, provided that we can evaluate the two
expectations above. This is where we need the Gibbs sampling algorithm in Algorithm 17.4.

Let us attempt to apply the EM Algorithm 16.3 for estimating W':

~Ep 88" +Epyss’, where s=(x;z;1).

o E-step: &41(2|x) = pw, (2[x).
o M-step: Wiy = argming, KL(Psy1||pw), where recall that p;y1(x,2) := ¥(dx) - pw, (z]%).
It follows then from Exercise 16.9 (or more directly from Exercise 16.10) that

Wi =VA™ (Pt+1T(X))’ i.e. Ep,,,T(X)=Ep,, T(X), where piy1:=pw,,,. (17.4)

However, we cannot implement (17.4) since the log-partition function A hence also its gradient VA is not
tractable!

In fact, the gradient algorithm in Remark 17.14 is some explicit form that bypasses the difficulty in EM.
Namely, to solve a nonlinear equation

f(W) =0, [ for our case, f(W) = E,,, T(X) — E;

Pt+1T(X)]
we apply the fixed-point iteration:
W W —n-£(W),

which converges (if at all) iff f(1W) = 0.

Algorithm 17.16: Learning BM
To estimate Epwss—'—7 we need to be able to draw a sample S ~ pyy. This can be achieved by the Gibbs sampling
Algorithm 17.4. Indeed, we know (recall that conditional of exponential family is again in exponential family,

Exercise 16.8)

w (S = 5518\, = s\;) xexp (2s; (WA 5,8;)) , ie. pw(S; = s;]8\; =s\;) = sgm(4s; (W\; ;,8\;)), (17.5)
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where the subscript \ ; indicates removal of the j-th entry or row.

Algorithm: Gibbs sampling from Boltzmann distribution py

Input: symmetric matrix W € §m+1
Output: approximate sample s ~ py
initialize s € {+1}™
repeat
for j=1,...,mdo
L p; < sgn(4(W\;;.5\;))
with probability p; set s; = 1, otherwise set s; = —1

AR W N R

(<]

until until convergence

Similarly, to estimate Ep,, ss' we first draw a training sample x ~ ¥, and then draw z ~ py(+|x). For the
latter, we fix x and apply the Gibbs sampling algorithm:

Algorithm: Gibbs sampling from conditional Boltzmann distribution py (-|x)

Input: symmetric matrix W € $™*!, training sample x
Output: approximate sample z ~ py (-|x)

1 initialize z € {£1}' and set s = (x;2;1)

2 repeat

3 for j=d+1,...,mdo

4 L p; < sgn(4(Wy;;:5\;))

5 with probability p; set s; = 1, otherwise set s; = —1

6 until until convergence

The above algorithms are inherently sequential hence extremely slow.

Algorithm 17.17: Learning RBM

We can now appreciate a big advantage in RBM:
pw(Z; = z|Zy\; = z\;, X = x) < exp (z; (Waj, X)), i.e. pw(Zj = z|Z\; =z, X = x) = sgm(2z; (Wy,;,X)),
and similarly

pw (X = 2;1Xy; = x\;, Z = 2) = sgm(2z; (W, 2)).

This is possible since in RBM (17.3), X only interacts with Z but there is no interaction within either X or
Z. Thus, we may apply block Gibbs sampling;:

Algorithm: Block Gibbs sampling from RBM py

Input: rectangular matrix 1W e R4+ x(+1)
Output: approximate sample s ~ py
1 initialize s = (x,z) € {£1}9+
2 repeat
3 p < sgm(2Wz)
4 for j=1,...,d, in parallel do
5 L with probability p; set x; = 1, otherwise set x; = —1

6 q < sgm(2W "x)
for j =1,...,t, in parallel do
L with probability g; set z; = 1, otherwise set z; = —1

©

until until convergence

T

Similarly, to estimate Eg,, ss' we first draw a training sample x ~ ¥, and then draw z ~ py (-|x). For the
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latter, we fix x and apply the Block Gibbs sampling algorithm:

Algorithm: Block Gibbs sampling from conditional RBM py(-|x)

Input: rectangular matrix W e R(4+Dx(+1)
Output: approximate sample z ~ py (-|x)
1 initialize z € {+1}*
2 repeat
3 q « sgm(2W Tx)
4 for j =1,...,t, in parallel do
5 L with probability g; set z; = 1, otherwise set z; = —1

6 until until convergence

Remark 17.18: Sampling and marginalization

After we have learned the parameter matrix W, we can draw a new sample (X, Z) from pyw (x,2z) using the
same unconditioned (block) Gibbs sampling algorithm. Simply dropping Z we obtain a sample X from the
marginal distribution py (x).

For RBM, we can actually derive the marginal density (up to a constant):

pw (X = x) x Z exp (x ' Wz) (17.6)
ze{+1}t
t4+1

Z Hexp TW,z25)

ze{£1}t j=1

t
=exp(x’ W i41) H exp(( ) + exp(— (x, W;;))] .

A similar formula for py (Z = z) obviously holds as well. Thus, for RBM, if we need only draw a sample X,
we can and perhaps should directly apply Gibbs sampling to the marginal density (17.6).

Exercise 17.19: Conditional independence in RBM

Prove or disprove the following for BM and RBM:

t d

H (z]x), pw(x|z) H (z5]z)

Remark 17.20: RBM as stochastic/feed-forward neural network

RBM is often referred to as a two-layer stochastic neural network, where X is the input layer while Z is the
output layer. It also defines an underlying nonlinear, deterministic, feed-forward network. Indeed, let

yj = pw(Z; = 1[X =x) = sgn(2 (W,;,x))

we obtain a nonlinear feedforward network that takes an input x € {£1}¢ and maps it non-linearly to an
output y € [0,1]%, through:

h =2 "x
y = sgm(h).

Of course, we can stack RBMs on top of each other and go “deep” (Hinton and Salakhutdinov 2006;
Salakhutdinov and Hinton 2012). Applications can be found in (Mohamed et al. 2012; Sarikaya et al. 2014).
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Hinton, G. E. and R. R. Salakhutdinov (2006). “Reducing the Dimensionality of Data with Neural Networks”. Science,
vol. 313, pp. 504-507.

Salakhutdinov, Ruslan and Geoffrey Hinton (2012). “An Efficient Learning Procedure for Deep Boltzmann Machines”.
Neural Computation, vol. 24, no. 8, pp. 1967-2006.

Mohamed, A., G. E. Dahl, and G. Hinton (2012). “Acoustic Modeling Using Deep Belief Networks”. IEEE Transactions
on Audio, Speech, and Language Processing, vol. 20, no. 1, pp. 14-22.

Sarikaya, R., G. E. Hinton, and A. Deoras (2014). “Application of Deep Belief Networks for Natural Language Under-
standing”. IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 22, no. 4, pp. 778-784.

Remark 17.21: Not necessarily binary data

It is possible to extend (R)BM to handle other types of data, see for instance (Welling et al. 2005).
In fact, let pw (x,2) = exp((T'(x,2z), W) — A(W)) be any joint density in the exponential family. Then, we
can estimate the parameter matrix W as before:

min  KL(X(x)||pw (%)) = min — Ey log/pW(X,z) dz.
W W .

Denoting pw (x,2) = x(dx)pw (z|x) and following the same steps as in Remark 17.14 we obtain:

0
W =—-E,T(X,Z) + E,, T(X, Z).
A restricted counterpart corresponds to

(T(x,2), W) = Ty (x) " W,.Tz(2).

Similar Gibbs sampling algorithms can be derived to approximate the expectations.

Welling, Max, Michal Rosen-zvi, and Geoffrey E. Hinton (2005). “Exponential Family Harmoniums with an Application
to Information Retrieval”. In: Advances in Neural Information Processing Systems 17, pp. 1481-1488.
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