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18 Deep Belief Networks

Goal

Belief network, sigmoid belief network, deep belief network, maximum likelihood, Gibbs sampling.

Alert 18.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 18.2: DAG

A directed acyclic graph (DAG) is a directed graph that contains no directed cycles. Note that the underlying
undirected graph could still contain cycles.

Definition 18.3: Notions in DAGs

A useful property of a DAG is that we can always define a partial ordering on its vertices so that u ≤
v iff there is a directed path from u to v. For each vertex v in the directed graph G = (V,E), we use
pa(v) := {u : −→uv ∈ E}, ch(v) := {u : −→vu ∈ E}, an(v) := {u : ∃w1, . . . , wk ∈ V,−−→uw1,

−−−→w1w2, . . . ,
−−→wkv ∈ E},

de(v) := {u : ∃w1, . . . , wk ∈ V,−−→vw1,
−−−→w1w2, . . . ,

−−→wku ∈ E}, and nd(v) := V \ ({v}∪de(v)) to denote the parents,
children, ancestors, descendants, and non-descendants of v, respectively. Similarly we define such sets for a
set of nodes by taking unions.

Definition 18.4: Belief/Bayes networks (BNs) (Pearl 1986)

For each vertex v of a DAG G = (V = {1, . . . ,m}, E), we associate a random variable Sv with it. Interchange-
ably we refer to the vertex either by v or Sv. Together S = (S1, . . . , Sm) defines a Belief network w.r.t. G iff
the joint density p factorizes as follows:

p(s1, . . . , sm) =
∏
v∈V

p(sv | pa(sv)). (18.1)

Pearl, Judea (1986). “Fusion, propagation, and structuring in belief networks”. Artificial Intelligence, vol. 29, no. 3,
pp. 241–288.

Theorem 18.5: Factorization of BNs

Fix a DAG G. For any set of normalized probability densities {pv(sv | pa(sv))}v∈V ,

p(s1, . . . , sm) =
∏
v∈V

pv(sv | pa(sv)) (18.2)

defines a BN over G, whose conditionals are precisely given by {pv}.

Proof. W.l.o.g. we may assume the nodes are so arranged that u ∈ de(v) =⇒ u ≥ v. This is possible since
the graph is a DAG. We claim that for all j,

p(s1, . . . , sj) =
∏

1≤v≤j

pv(sv | pa(sv)).
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The idea is to perform marginalization bottom-up. Indeed,

p(s1, . . . , sj) :=

∫
p(s1, . . . , sm) dsj+1 · · · dsm

=
∏

1≤v≤j

pv( sv | pa(sv)︸ ︷︷ ︸
no sj+1,...,sm

)

∫ ∏
j+1≤v≤m

pv(sv | pa(sv)) dsj+1 · · · dsm

=
∏

1≤v≤j

pv(sv | pa(sv))

∫ ∏
j+1≤v≤m−1

pv(sv | pa(sv)︸ ︷︷ ︸
no sm

) dsj+1 · · · dsm−1

(∫
pm(sm | pa(sm)) dsm

)
=

∏
1≤v≤j

pv(sv | pa(sv))

∫ ∏
j+1≤v≤m−1

pv(sv | pa(sv)) dsj+1 · · · dsm−1

= · · · =
∏

1≤v≤j

pv(sv | pa(sv)).

This also verifies that p, as defined in (18.2), is indeed a density. Moreover, for all j,

p(sj | s1, . . . , sj−1) :=
p(s1, . . . , sj)

p(s1, . . . , sj−1)
= pj(sj | pa(sj)).

Therefore,

p(sj ,pa(sj)) =

∫
p(s1, . . . , sj)

∏
v∈{1,...,j−1}\pa(sj)

dsv

= pj(sj | pa(sj))

∫
p(s1, . . . , sj−1)

∏
v∈{1,...,j−1}\pa(sj)

dsv

= pj(sj | pa(sj)) · p(pa(sj)),

implying the coincidence of the conditionals

p(sj | s1, . . . , sj−1) = pj(sj | pa(sj)) = p(sj | pa(sj)),

hence completing our proof.

The main significance of this theorem is that by specifying local conditional probability densities pv(sv |
pa(sv)) for each node v, we automatically obtain a bona fide joint probability density p over the DAG.

Example 18.6: Necessity of the DAG condition

Theorem 18.5 can fail if the underlying graph is not a DAG. Consider the simple graph with two nodes X1, X2

taking values in {0, 1}. Define the conditionals as follows:

p(X1 = 1 | X2 = 1) = 0.5, p(X1 = 1 | X2 = 0) = 1, p(X2 = 1 | X1 = 1) = 1, p(X2 = 1 | X1 = 0) = 0.5.

Then if the graph is cyclic and the factorization (??) holds, then we have

p(X1 = 1, X2 = 1) = p(X1 = 1 | X2 = 1) · p(X2 = 1 | X1 = 1) = 0.5

p(X1 = 1, X2 = 0) = p(X1 = 1 | X2 = 0) · p(X2 = 0 | X1 = 1) = 0

p(X1 = 0, X2 = 1) = p(X1 = 0 | X2 = 1) · p(X2 = 1 | X1 = 0) = 0.25

p(X1 = 0, X2 = 0) = p(X1 = 0 | X2 = 0) · p(X2 = 0 | X1 = 0) = 0,

not a joint distribution. Note that even if we re-normalize the joint distribution, we won’t be able to recover
the conditionals: p(X1 = 1 | X2 = 1) = 0.5

0.75 6= 0.5.

Yaoliang Yu 119 –Version 0.0–July 9, 2020–



CS480/680–Spring 2020 §18 DEEP BELIEF NETWORKS University of Waterloo

Remark 18.7: Economic parameterization

For a binary valued random vector X ∈ {±1}d, in general we need 2d− 1 positive numbers to specify its joint
density. However, if X is a BN over a DAG whose maximum in-degree is k, then we need only (at most)
d(2k+1 − 1) positive numbers to specify the joint density (by specifying each conditional in (18.1)).

For k = 0 we obtain the independent setting while for k = 1 we include the so-called naive Bayes model.

Definition 18.8: Sigmoid belief network (SBN) (Neal 1992)

Instead of parameterizing each conditional densities p(sv|pa(sv)) directly, we now consider more efficient ways,
which is also necessary if Sv is continuous valued.

Following Neal (1992), we restrict our discussion to binary S ∈ {±1}m and define

∀j = 1, . . . ,m, pW (Sj = sj |S<j = s<j) = sgm

(
sj(Wj,m+1 +

j−1∑
k=1

skWjk)

)
= sgm(sjWj:s),

where W ∈ Rm×(m+1) is strictly lower-triangular (i.e. Wjk = 0 if m ≥ k ≥ j). Note that we have added a
bias term in the last column of W and appended the constant 1 to get s = (s; 1). Note the similarity with
Boltzmann machines (17.5).

The ordering of the nodes Sj here are chosen rather arbitrarily. A different ordering may lead to conse-
quences in later analysis, although we shall assume in the following a fixed ordering is given without much
further discussion.

Applying Theorem 18.5 we obtain a joint density pW (s) := pW (x, z), parameterized by the (strictly lower-
triangular) weight matrix W . We will see how to learn W based on a sample X1, . . . ,Xn ∼ pW (x).
Neal, Radford M. (1992). “Connectionist learning of belief networks”. Artificial Intelligence, vol. 56, no. 1, pp. 71–113.

Example 18.9: SBN with m = 1 and m = 2

Let m = 1 in SBN. We have

pb(S = s) = sgm(sb),

which is exactly the Bernoulli distribution whose mean parameter p is parameterized as a sigmoid transfor-
mation of b. Compare with Example 17.9.

For m = 2, we have instead

pw,b,c(S1 = s1, S2 = s2) = sgm(s1c) · sgm(s2(ws1 + b)).

These examples confirm that without introducing latent variables, SBNs may not approximate all distributions
over the cube well.

Definition 18.10: Noisy-OR belief network (Neal 1992)

The sigmoid function is chosen in Definition 18.8 mostly to mimic Boltzmann machines, but it is clear that
any univariate CDF works equally well. Indeed, we can even define:

p(Sj = 1|S<j = s<j) = 1− exp
(
−W 1+s

2

)
,

where as before W ∈ Rm×(m+1) is strictly lower-triangular. The awkward term s+1
2 is to reduce to the

{0, 1}-valued case, the setting where noisy-or is traditionally defined in. Note that we need the constraint
W (1 + s) ≥ 0 (for instance W ≥ 0 suffices) to ensure the resulting density is nonnegative.

See (Arora et al. 2017) for some recent results on learning noisy-or networks.
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Arora, Sanjeev, Rong Ge, Tengyu Ma, and Andrej Risteski (2017). “Provable Learning of Noisy-OR Networks”. In:
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1057–1066.

Neal, Radford M. (1992). “Connectionist learning of belief networks”. Artificial Intelligence, vol. 56, no. 1, pp. 71–113.

Remark 18.11: Universality

As shown in (Neal 1992), Boltzmann distributions, SBNs and Noisy-OR BNs in general represent different
strict subsets of all discrete distributions over the cube {±1}m. If we introduce (a large number of) t latent
variables, then the marginal distribution on X can approximate any discrete distribution arbitrarily well, for
all 3 networks. More refined universality results can be found in (Sutskever and Hinton 2008).
Neal, Radford M. (1992). “Connectionist learning of belief networks”. Artificial Intelligence, vol. 56, no. 1, pp. 71–113.
Sutskever, Ilya and Geoffrey E. Hinton (2008). “Deep, Narrow Sigmoid Belief Networks Are Universal Approximators”.

Neural Computation, vol. 20, no. 11, pp. 2629–2636.

Example 18.12: SBN with d = 1 and t = 1

Let m = 2 in SBN. We partition S = (X,Z), hence

pw,b,c(X = x, Z = z) = sgm(xc) · sgm(z(wx+ b)).

Marginalizing over z = {±1}:

pw,b,c(X = x) = sgm(xc)[sgm(wx+ b) + sgm(−wx− b)] = sgm(xc).

On the other hand, if we swap the position of Z and X:

pw,b,c(Z = z,X = x) = sgm(zc) · sgm(x(wz + b)).

Marginalizing over z = {±1}:

pw,b,c(X = x) = [sgm(c)sgm(x(w + b)) + sgm(−c)sgm(x(−w + b))],

which is a mixture.

Algorithm 18.13: SBN–Maximum Likelihood

Given a sample X1, . . . ,Xn ∈ {±1}d, we apply ML to estimate W :

min
W∈Rm×(m+1)

KL(χ̂(x)‖pW (x)),

where the SBN pW is defined in Definition 18.8 and we remind again thatW is always constrained to be strictly
lower-triangular (modulus the last bias column) in this section (although we shall not signal this anymore).

To apply (stochastic) gradient descent, we compute the gradient:

∂

∂Wj:
= −Ep̂W

∂ log pW (s)

∂Wj:
, where p̂W (s) := pW (z,x) := χ̂(dx) · pW (z|x)

= −Ep̂W

∂ log
∏m
j=1 pW (sj |s<j)
∂Wj:

= −Ep̂W

∂ log pW (sj |s<j)
∂Wj:

= −Ep̂W

sgm′(sjWj:s)

sgm(sjWj:s)
sj s̃<j ,

where we use the tilde notation s̃<j to denote the full size vector where coordinates k ∈ [j,m] are zeroed out
(since W is strictly lower-triangular). Using the fact that sgm′(t) = sgm(t)sgm(−t) we obtain:

∀j = 1, . . . , d, ∀k 6∈ [j,m],
∂

∂Wjk
= −Ep̂W sgm(−sjWj:s)sjsk.

Note that the gradient only involves 1 expectation, while there were 2 in BMs (cf. Remark 17.14). This is
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perhaps expected, since in BM we have that intractable log-partition function to normalize the density while
in BN the joint density is automatically normalized since each conditional is so.

Algorithm 18.14: Conditional Gibbs sampling for SBN

We now give the conditional Gibbs sampling algorithm for p̂W (x, z) = χ̂(dx) · pW (z|x). For that we derive
the conditional density (Pearl 1987):

p(Sj = t|S\j = s\j) ∝ p(S\j = s\j , Sj = t)

∝ p(Sj = t|S<j = s<j) ·
∏
k>j

p(Sk = sk|S<k,\j = s<k,\j , Sj = t)

= sgm(tWj:s)
∏
k>j

sgm[sk(Wk:s +Wkj(t− sj))]

We omit the pseudo-code but point out that the matrix vector product W s should be dynamically updated
to save computation.
Pearl, Judea (1987). “Evidential reasoning using stochastic simulation of causal models”. Artificial Intelligence, vol. 32,

no. 2, pp. 245–257.

Alert 18.15: Importance of ordering: training vs. testing

If we choose to put the observed variables X before the latent variables Z so that S = (X,Z). Then, drawing a
sample Z necessitates the above (iterative) Gibbs sampling procedure. Thus, training is expensive. However,
after training drawing a new (exact) sample for X only takes one-shot. In contrast, if we arrange S = (Z,X).
Then, drawing a sample Z during training no longer requires the Gibbs sampling algorithm hence training is
fast. However, the price to pay is that at test time when we want to draw a new sample X, we would have to
run the iterative Gibbs sampling algorithm.

Exercise 18.16: Failure of EM

I know you must wondering if we can apply EM to SBN. The answer is no and the details are left as exercise.

Definition 18.17: Deep belief network (DBN) (Bengio and Bengio 1999)

We now extend SBN to handle any type of data and go deep. We achieve this goal through 3 key steps:

• First, we realize that SBN amounts to specifying d univariate, parameterized densities. Indeed, let

p(sj |s<j) = pj(sj ; θj(s<j)),

where pj is a prescribed univariate density on sj with parameter θj . For instance, pj may be the
exponential family with natural parameter θj (e.g. Bernoulli where θj = pj or Gaussian where θj =
(µj , σ

2
j )).

• Second, the parameter θj can be computed as a function from the previous observations s<j . For
instance, SBN specifies pj to be Bernoulli whose mean parameter pj is computed as the output of a
two-layer neural network with sigmoid activation function:

h = W s

p = sgm(h).

• It is then clear that we could use a deep neural net to compute the parameter θj :

h0 = s (18.3)
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∀` = 1, . . . , L− 1, h` = σ(W`h`−1)

θ = σ(WLhL−1).

Note that we need to make sure θj depends only on the first j − 1 inputs s<j , which can be achieved
by wiring the network appropriately. For instance, if W1 is strictly lower-triangular while W≥2 is lower-
triangular (Bengio and Bengio 1999), then we obviously satisfy this constraint.

Bengio, Yoshua and Samy Bengio (1999). “Modeling High-Dimensional Discrete Data with Multi-Layer Neural Net-
works”. In: NeurIPS.

Alert 18.18: Weight sharing

We compare the network structure (18.3) with the following straightforward alternative:

h
(j)
0 = s<j (18.4)

∀` = 1, . . . , L− 1, h
(j)
` = σ(W

(j)
` h

(j)
`−1)

θj = σ(W
(j)
L h

(j)
L−1),

where we use separate networks for each parameter θj . The weights W (j)
` above can be arbitrary. We observe

that the parameterization in (18.3) is much more efficient, since the weights used to compute θj are shared
with all subsequent computations for θ≥j . Needless to say, the parameterization in (18.4) are more flexible.
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