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19 Generative Adversarial Networks
Goal

Push-forward, Generative Adversarial Networks, min-max optimization, duality.

Alert 19.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Example 19.2: Simulating distributions

Suppose we want to sample from a Gaussian distribution with mean u and covariance S. The typical approach
is to first sample from the standard Gaussian distribution (with zero mean and identity covariance) and then
perform the transformation:

If Z ∼ N (0, I), then X = T(Z) := u + S1/2Z ∼ N (u, S).

Similarly, we can sample from a χ2 distribution with zero mean and degree d by the transformation:

If Z ∼ N (0, Id), then X = T(Z) :=

d∑
j=1

Z2
j ∼ χ2(d).

In fact, we can sample from any distribution F on R by the following transformation:

If Z ∼ N (0, 1), then X = T(Z) := F−(Φ(Z)) ∼ F, where F−(z) = min{x : F (x) ≥ z},

and Φ is the cumulative distribution function of standard normal.

Theorem 19.3: Transforming to any probability measure

Let µ be a diffuse (Borel) probability measure on a polish space Z and similarly ν be any (Borel) probability
measure on another polish space X. Then, there exist (measurable) maps T : Z→ X such that

If Z ∼ µ, then X := T(Z) ∼ ν.

Recall that a (Borel) probability measure is diffuse iff any single point has measure 0. For less mathematical
readers, think of Z = Rp, X = Rd, µ and ν as probability densities on the respective Euclidean spaces.

Alert 19.4: A whole new world

Recall that in sigmoid belief network (Section 18) we specify the conditional densities p(xj |x<j). The problem
of this approach is that we have to commit to a particular parametric form for each conditional (e.g. Bernoulli
or Gaussian), and the only thing we can tune is the parameters of the chosen conditional (e.g. mean or
variance). However, Theorem 19.3 suggests a more powerful way: we can simply learn a parameterized map
Tθ, where Tθ(Z) models the target density (with say Z ∼ N (0, Ip)).

Definition 19.5: Push-forward generative modeling

Given an i.i.d. sampleX1, . . . ,Xn ∼ χ, we can now estimate the target density χ by the following push-forward
approach:

inf
θ

D(X,Tθ(Z)),
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where say Z ∼ N (0, Ip), Tθ : Rp → Rd, and X ∼ χ (the true underlying data generating distribution). The
function D is a “distance” that measures the closeness of our (true) data distribution (represented by X) and
model distribution (represented by Tθ(Z)). By minimizing D we bring our model Tθ(Z) close to our data X.

Remark 19.6: The good, the bad, and the beautiful

One big advantage of the push-forward approach in Definition 19.5 is that after training (e.g. finding a
reasonable θ) we can effortlessly generate new data: we sample Z ∈ N (0, Id) and then set X = Tθ(Z). This
is in sharp contrast with RBM and DBN where we still need to run the (slow) Gibbs sampling to generate
new samples.

On the flip side, we no longer have any explicit form for the model density (namely, that of Tθ(Z) when
p < d). In contrast, we know the exact form of the density of RBM (up to a normalization constant) and
DBN. This renders direct maximum likelihood estimation of θ impossible.

This is where we need the beautiful idea called duality. Basically, we need to distinguish two distributions:
the data distribution represented by a sample X and the model distribution represented by a sample Tθ(Z).
We distinguish them by running many tests, represented by functions f :

sup
f∈F

|Ef(X)− ETθ(Z)|.

If the class of tests F we run is dense enough, then we would be able to tell the difference between the two
distributions and provide feedback for the model θ to improve, until we no longer can tell the difference.

Definition 19.7: f-divergence (Csiszár 1963; Morimoto 1963; Ali and Silvey 1966)

Let f : R+ → R be a strictly convex function (see Definition 3.9) with f(1) = 0. We define the following
f -divergence to measure the closeness of two pdfs p and q:

Df (p‖q) :=

∫
f
(
p(x)/q(x)

)
· q(x) dx, (19.1)

where we assume q(x) = 0 =⇒ p(x) = 0 (otherwise we put the divergence to ∞).
For two random variables Z ∼ q and X ∼ p, we sometimes abuse the notation to mean

Df (X‖Z) := Df (p‖q).

Csiszár, Imre (1963). “Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitat
von Markoffschen Ketten”. Magyar. Tud. Akad. Mat. Kutato Int. Kozl., vol. 8, pp. 85–108.

Morimoto, Tetsuzo (1963). “Markov Processes and the H-Theorem”. Journal of the Physical Society of Japan, vol. 18,
no. 3, pp. 328–331.

Ali, S. M. and S. D. Silvey (1966). “A General Class of Coefficients of Divergence of One Distribution from Another”.
Journal of the Royal Statistical Society. Series B (Methodological), vol. 28, no. 1, pp. 131–142.

Exercise 19.8: Properties of f-divergence

Prove the following:

• Df (p‖q) ≥ 0, with 0 attained iff p = q;

• Df+g = Df + Dg and Dsf = sDf for s > 0;

• Let g(t) = f(t) + s(t− 1) for any s. Then, Dg = Df ;

• If p(x = 0) ⇐⇒ q(x) = 0, then Df (p‖q) = Df�(q‖p), where f�(t) := t · f(1/t);

• f� is (strictly) convex, f�(1) = 0 and (f�)� = f ;

Yaoliang Yu 126 –Version 0.1–July 12, 2020–

https://en.wikipedia.org/wiki/F-divergence
https://doi.org/10.1143/JPSJ.18.328
https://doi.org/10.1143/JPSJ.18.328
https://doi.org/10.1143/JPSJ.18.328
http://www.jstor.org/stable/2984279


CS480/680–Spring 2020 §19 GENERATIVE ADVERSARIAL NETWORKS University of Waterloo

The second last result indicates that f -divergences are not usually symmetric. However, we can always
symmetrize them by the transformation: f ← f + f�.

Example 19.9: KL and LK

Let f(t) = t log t, then we obtain the Kullback-Leibler (KL) divergence:

KL(p‖q) =

∫
p(x) log(p(x)/q(x)) dx.

Reverse the inputs we obtain the reverse KL divergence:

LK(p‖q) := KL(q‖p).

Verify by yourself that the underlying function f = − log for reverse KL.

Example 19.10: More divergences, more fun

Derive the formula for the following f -divergences:

• χ2-divergence: f(t) = (t− 1)2;

• Hellinger divergence: f(t) = (
√
t− 1)2;

• total variation: f(t) = |t− 1|;

• Jensen-Shannon divergence: f(t) = t log t− (t+ 1) log(t+ 1) + log 4;

• Rényi divergence (Rényi 1961): f(t) = tα−1
α−1 for some α > 0 (for α = 1 we take limit and obtain ?).

Which of the above are symmetric?
Rényi, Alfréd (1961). “On Measures of Entropy and Information”. In: Proceedings of the Fourth Berkeley Symposium

on Mathematical Statistics and Probability, pp. 547–561.

Definition 19.11: Fenchel conjugate function

For any extended real-valued function f : V→ (−∞,∞] we define its Fenchel conjugate function as:

f∗(x∗) := sup
x
〈x,x∗〉 − f(x).

According to one of the rules in Exercise 3.13, f∗ is always a convex function (of x∗).
If dom f is nonempty and closed, and f is continuous, then

f∗∗ := (f∗)∗ = f.

This remarkable property of convex functions will now be used!

Example 19.12: Fenchel conjugate of JS

Consider the convex function that defines the Jensen-Shannon divergence:

f(t) = t log t− (t+ 1) log(t+ 1) + log 4. (19.2)

We derive its Fenchel conjugate:

f∗(s) = sup
t
st− f(t) = sup

t
st− t log t+ (t+ 1) log(t+ 1)− log 4.
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Taking derivative w.r.t. t we obtain

s− log t− 1 + log(t+ 1) + 1 = 0 ⇐⇒ t =
1

exp(−s)− 1
,

and plugging it back we get

f∗(s) =
s

exp(−s)− 1
− 1

exp(−s)− 1
log

1

exp(−s)− 1
+

exp(−s)
exp(−s)− 1

log
exp(−s)

exp(−s)− 1
− log 4

=
s

exp(−s)− 1
− 1

exp(−s)− 1
log

1

exp(−s)− 1
+

exp(−s)
exp(−s)− 1

log
1

exp(−s)− 1
− s exp(−s)

exp(−s)− 1
− log 4

= −s− log(exp(−s)− 1)− log 4

= − log(1− exp(s))− log 4. (19.3)

Using conjugation again, we obtain the important formula:

f(t) = sup
s
st− f∗(s) = sup

s
st+ log(1− exp(s)) + log 4.

Exercise 19.13: More conjugates

Derive the Fenchel conjugate of the other convex functions in Example 19.9 and Example 19.10.

Definition 19.14: Generative adversarial networks (GAN) (Goodfellow et al. 2014)

We are now ready to define the original GAN, which amounts to using the Jensen-Shannon divergence in
Definition 19.5:

inf
θ

JS(X‖Tθ(Z)), where JS(p‖q) = Df (p‖q) = KL(p‖ p+q
2 ) + KL(p‖ p+q

2 ),

and the convex function f is defined in (19.2), along with its Fenchel conjugate f∗ given in (19.3).
To see how we can circumvent the lack of an explicit form of the density q(x) of Tθ(Z), we expand using

duality:

JS(X‖Tθ(Z)) =

∫
x

f
(
p(x)/q(x)

)
q(x) dx

=

∫
x

[sup
s
sp(x)/q(x)− f∗(s)]q(x) dx

=

∫
x

[sup
s
sp(x)− f∗(s)q(x)] dx

= sup
S:Rd→R

∫
x

S(x)p(x) dx−
∫

x

f∗(S(x))q(x) dx

= sup
S:Rd→R

ES(X)− Ef∗(S(Tθ(Z))).

Therefore, if we parameterize the test function S by φ (say a deep net), then we obtain a lower bound of the
Jensen-Shannon divergence for minimizing:

inf
θ

sup
φ

ESφ(X)− Ef∗(Sφ(Tθ(Z))).

Of course, we cannot compute either of the two expectations, so we use sample average to approximate them:

inf
θ

sup
φ

ÊSφ(X)− Êf∗(Sφ(Tθ(Z))), (19.4)
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where the first sample expectation Ê is simply the average of the given training data while the second sample
expectation is the average over samples generated by the model Tθ(Z) (recall Remark 19.6).

In practice, both Tθ and Sφ are represented by deep nets, and the former is called the generator while the
latter is called the discriminator. Our final objective (19.4) represents a two-player game between the generator
and the discriminator. At equilibrium (if any) the generator is forced to mimic the (true) data distribution
(otherwise the discriminator would be able to tell the difference and incur a loss for the generator).

See Algorithm 3.46 for a simple algorithm for solving (19.4).
Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio (2014). “Generative Adversarial Nets”. In: NIPS.

Remark 19.15: Approximation

We made a number of approximations in Definition 19.14. Thus, technically speaking, the final GAN objective
(19.4) no longer minimizes the Jensen-Shannon divergence. Nock et al. (2017) and Liu et al. (2017) formally
studied this approximation trade-off.
Nock, Richard, Zac Cranko, Aditya K. Menon, Lizhen Qu, and Robert C. Williamson (2017). “f -GANs in an Information

Geometric Nutshell”. In: NIPS.
Liu, Shuang, Léon Bottou, and Kamalika Chaudhuri (2017). “Approximation and convergence properties of generative

adversarial learning”. In: NIPS.

Exercise 19.16: Catch me if you can

Let us consider the game between the generator q(x) (the implicit density of Tθ(Z)) and the discriminator
S(x):

inf
q

sup
S

∫
x

S(x)p(x) dx +

∫
x

log
(
1− exp(S(x))

)
q(x) dx + log 4.

• Fixing the generator q, what is the optimal discriminator S?

• Plugging the optimal discriminator S back in, what is the optimal generator?

• Fixing the discriminator S, what is the optimal generator q?

• Plugging the optimal generator q back in, what is the optimal discriminator?

Exercise 19.17: KL vs. LK

Recall that the f -divergence Df (p‖q) is infinite iff for some x, p(x) 6= 0 while q(x) = 0. Consider the following
twin problems:

qKL := argmin
q∈Q

KL(p‖q)

qLK := argmin
q∈Q

LK(p‖q).

Recall that supp(p) := cl{x : p(x) 6= 0}. What can we say about supp(p), supp(qKL) and supp(qLK)?
What about JS?

Definition 19.18: f-GAN (Nowozin et al. 2016)

Following Nowozin et al. (2016), we summarize the main idea of f -GAN as follows:

• Generator: Let µ be a fixed reference probability measure on space Z (usually the standard normal
distribution) and Z ∼ µ. Let ν be any target probability measure on space X and X ∼ ν. Let
T ⊆ {T : Z → X} be a class of transformations. According to Theorem 19.3 we know there exist
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transformations T (which may or may not be in our class T ) so that T(Z) ∼ X ∼ ν. Our goal is to
approximate such transformations T using our class T .

• Loss: We use the f -divergence to measure the closeness between the target X and the transformed
reference T(Z):

inf
T∈T

Df
(
X‖T(Z)

)
.

In fact, any loss function that allows us to distinguish two probability measures can be used. However,
we face an additional difficulty here: the densities of X and T(Z) (w.r.t. a third probability measure λ)
are not known to us (especially the former) so we cannot naively evaluate the f -divergence in (19.1).

• Discriminator: A simple variational reformulation will resolve the above difficulty! Indeed,

Df (X‖T(Z)) =

∫
f

(
dν

dτ
(x)

)
dτ(x) (T(Z) ∼ τ)

=

∫
sup

s∈dom(f∗)

[
s

dν

dτ
(x)− f∗(s)

]
dτ(x) (f∗∗ = f)

≥ sup
S∈S

∫ [
S(x)

dν

dτ
(x)− f∗(S(x))

]
dτ(x) (S ⊆ {S : X→ dom(f∗)})

= sup
S∈S

E[S(X)]−E[f∗
(
S(T(Z))

)
] (equality if f ′

(
dν

dτ

)
∈ S),

so our estimation problem reduces to the following minimax zero-sum game:

inf
T∈T

sup
S∈S

E[S(X)]−E[f∗
(
S(T(Z))

)
].

By replacing the expectations with empirical averages we can (approximately) solve the above problem
with classic stochastic algorithms.

• Reparameterization: The class of functions S we use to test the difference between two probability
measures in the f -divergence must have their range contained in the domain of f∗. One convenient way
to enforce this constraint is to set

S = σ ◦ U := {σ ◦ U : U ∈ U}, σ : R→ dom(f∗), U ⊆ {U : X→ R},

where the functions U are unconstrained and the domain constraint is enforced through a fixed “activation
function” σ. With this choice, the final f -GAN problem we need to solve is:

inf
T∈T

sup
U∈U

E[σ ◦ U(X)]−E[(f∗ ◦ σ)
(
U(T(Z))

)
].

Typically we choose an increasing σ so that the composition f∗ ◦σ is “nice.” Note that the monotonicity
of σ implies the same monotonicity of the composition f∗◦σ (since f∗ is always increasing as f is defined
only on R+). In this case, we prefer to pick a test function U so that U(X) is large while U(T(Z)) is small.
This choice aligns with the goal to “maximize target and minimize transformed reference,” although the
opposite choice would work equally well (merely a sign change).

Nowozin, Sebastian, Botond Cseke, and Ryota Tomioka (2016). “f -GAN: Training Generative Neural Samplers using
Variational Divergence Minimization”. In: NIPS.

Remark 19.19: f-GAN recap

To specify an f -GAN, we need:

• A reference probability measure µ: should be easy to sample and typically we use standard normal;

Yaoliang Yu 130 –Version 0.1–July 12, 2020–

https://papers.nips.cc/paper/6066-f-gan-training-generative-neural-samplers-using-variational-divergence-minimization
https://papers.nips.cc/paper/6066-f-gan-training-generative-neural-samplers-using-variational-divergence-minimization


CS480/680–Spring 2020 §19 GENERATIVE ADVERSARIAL NETWORKS University of Waterloo

• A class of transformations (generators): T ⊆ {T : Z→ X};

• An increasing convex function f∗ : dom(f∗) → R with f∗(0) = 0 and f∗(s) ≥ s (or equivalently an
f -divergence);

• An increasing activation function σ : R→ dom(f∗) so that f∗ ◦ σ is “nice”;

• A class of unconstrained test functions (discriminators): U ⊆ {U : X→ R} so that S = σ ◦ U .

Definition 19.20: Wasserstein GAN (WGAN) (Arjovsky et al. 2017)

If we let the test functions range over the set of all 1-Lipschitz continuous functions L, we then obtain WGAN:

inf
θ

sup
S∈L

ES(X)− ES
(
Tθ(Z)

)
,

which corresponds to the dual of the 1-Wasserstein distance.
Arjovsky, Martin, Soumith Chintala, and Léon Bottou (2017). “Wasserstein Generative Adversarial Networks”. In:

ICML.

Definition 19.21: Maximum Mean Discrepancy GAN (MMD-GAN)

If, instead, we choose the test functions from a reproducing kernel Hilbert space (RKHS), then we obtain the
so-called MMD-GAN (Dziugaite et al. 2015; Li et al. 2015; Li et al. 2017):

inf
θ

sup
S∈Hκ

ES(X)− ES
(
Tθ(Z)

)
,

where Hκ is the unit ball of the RKHS induced by the kernel κ.
Dziugaite, Gintare Karolina, Daniel M. Roy, and Zoubin Ghahramani (2015). “Training generative neural networks via

maximum mean discrepancy optimization”. In: UAI.
Li, Yujia, Kevin Swersky, and Rich Zemel (2015). “Generative Moment Matching Networks”. In: ICML.
Li, Chun-Liang, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabas Poczos (2017). “MMD GAN: Towards

Deeper Understanding of Moment Matching Network”. In: NIPS.
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