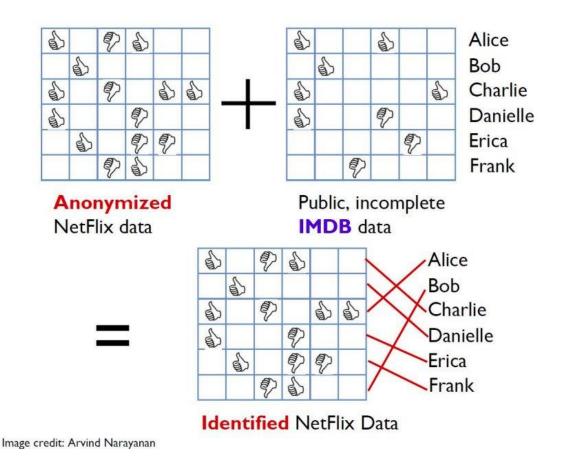
Differentially Private Machine Learning

Gautam Kamath

NetFlix Prize

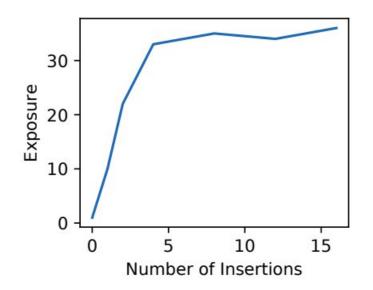
- Recommendation engine competition (2006-2009)
- Training data: (anonymized) user ID, movie, rating, date
- Matched with public IMDb data: real name, movie, rating, date
- Class action lawsuit, cancellation of sequel



Memorization in Neural Networks

- Language models
- Log-perplexity of a sequence:
 - $P_{\theta}(x_1, \dots, x_n) =$ $\sum_i (-\log_2 \Pr(x_i | f_{\theta}(x_1, \dots, x_{i-1})))$
- "Mary had a little lamb": low perplexity
- "Correct horse battery staple": high perplexity
- But what if it were in the training data?

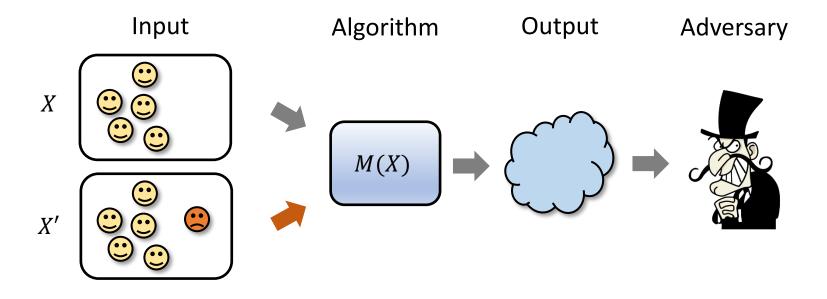
- Canary phrases
 - Is "My SIN is ???-???" more likely than it should be?
- Only differential privacy works



[Carlini-Liu-Erlingsson-Kos-Song '19]

See also [Carlini-Tramer-Wallace-Jagielski-HerbertVoss-Lee-Roberts-Brown-Song-Erlingsson-Oprea-Raffel '20]

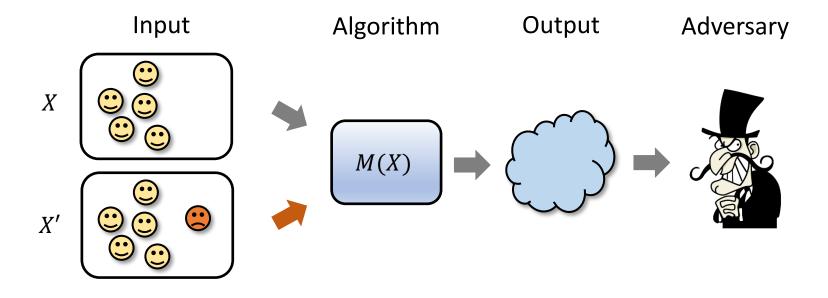
Differential Privacy (DMNS06)



• $M: D^n \to R$ is (ε, δ) -DP if for all inputs X, X' which differ on one entry:

 $\forall S \subseteq R \qquad \Pr[M(X) \in S] \approx_{\varepsilon, \delta} \Pr[M(X') \in S]$

Differential Privacy (DMNS06)



• $M: D^n \to R$ is (ε, δ) -DP if for all inputs X, X' which differ on one entry:

 $\forall S \subseteq R \qquad \Pr[M(X) \in S] \le e^{\varepsilon} \Pr[M(X') \in S] + \delta$

Differential Privacy (DMNS06)

 $M: D^{n} \to R \text{ is } (\varepsilon, \delta) \text{-DP if for all inputs } X, X' \text{ which differ on one entry:}$ $\forall S \subseteq R \qquad \Pr[M(X) \in S] \leq e^{\varepsilon} \Pr[M(X') \in S] + \delta$

- Google, Apple, Microsoft, 2020 US Census
- $\varepsilon \approx 1$ and $\delta < 1/n$
- Worst-case guarantee
- $e^{\varepsilon_1}e^{\varepsilon_2} = e^{\varepsilon_1+\varepsilon_2}$
- Symmetric definition
- *M* must be randomized

What DP does and does not mean

- Outcome is the same whether or not your data is in the dataset
- Protects against linkage and membership inference attacks
- Does not prevent statistics and machine learning
 - "Smoking causes cancer"
- Not suitable when we need to identify a specific individual
- Information-theoretic notion

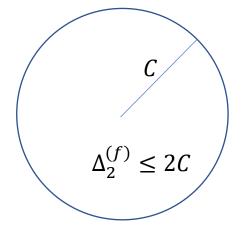
Properties of Differential Privacy

- Post-processing
 - If M(X) is (ε, δ) -DP, then f(M(X)) is (ε, δ) -DP
- Group Privacy
 - If *M* is (ε, δ) -DP, and *X* and *X'* differ in *k* entries, $\forall S \subseteq R \quad \Pr[M(X) \in S] \le e^{k\varepsilon} \Pr[M(X') \in S] + \delta$
- Composition
 - If $M = (M_1, ..., M_k)$ is a sequence of $k \ (\varepsilon, \delta)$ -DP algorithms
 - *M* is $(k\varepsilon, k\delta)$ -DP (Basic Composition)
 - *M* is $(O(\sqrt{k}\varepsilon \log(1/\delta')), k\delta + \delta')$ -DP (Advanced Composition)

Gaussian Mechanism

•
$$\ell_2$$
-sensitivity of f

$$\Delta_2^{(f)} = \max_{X \sim X'} ||f(X) - f(X')||_2$$
• If $||f(X)||_2 \le C$, then $\Delta_2^{(f)} \le 2C$



Gaussian Mechanism

 $M(X) = f(X) + (Y_1, ..., Y_k)$ Where $f(X) \in \mathbb{R}^k$, and the Y_i 's are $\approx N(0, \Delta^2/\varepsilon^2)$

• (ε, δ) -DP

Stochastic Gradient Descent

- 1. Choose a random minibatch *B* of points from the dataset
- 2. Compute the average gradient $\frac{1}{|B|} \sum_{(x,y) \in B} \nabla \ell(\theta_t, x, y)$
- 3. Take a step in the negative direction of the gradient
- 4. Repeat k times

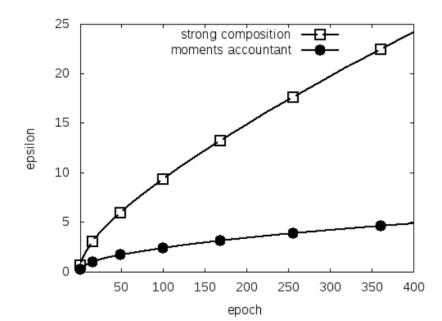
Differentially Private Stochastic Gradient Descent

- 1. Sample a "lot" of points of (expected) size L by selecting each point to be in the lot with probability L/n
- 2. For each point in the lot, compute the gradient $\nabla \ell(\theta_t, x, y)$ and "clip" it to have ℓ_2 norm at most *C*
- 3. Average the clipped gradients and add Gaussian noise
 - Apply the Gaussian Mechanism
- 4. Take a step in the negative direction of resulting vector
- 5. Repeat k times

[Song-Chaudhuri-Sarwate '13, Bassily-Smith-Thakurta '14, Abadi-Chu-Goodfellow-McMahan-Mironov-Talwar-Zhang '16]

Privacy of DPSGD (Informal)

- Suppose one step of DPSGD has privacy with parameter ε
- Since we subsample with probability L/n, each step is $\varepsilon L/n$
 - "Privacy amplification by subsampling"
- k steps have privacy with parameter of $\varepsilon \sqrt{k}L/n$
 - Advanced composition
- Better analysis: "Moments accountant"

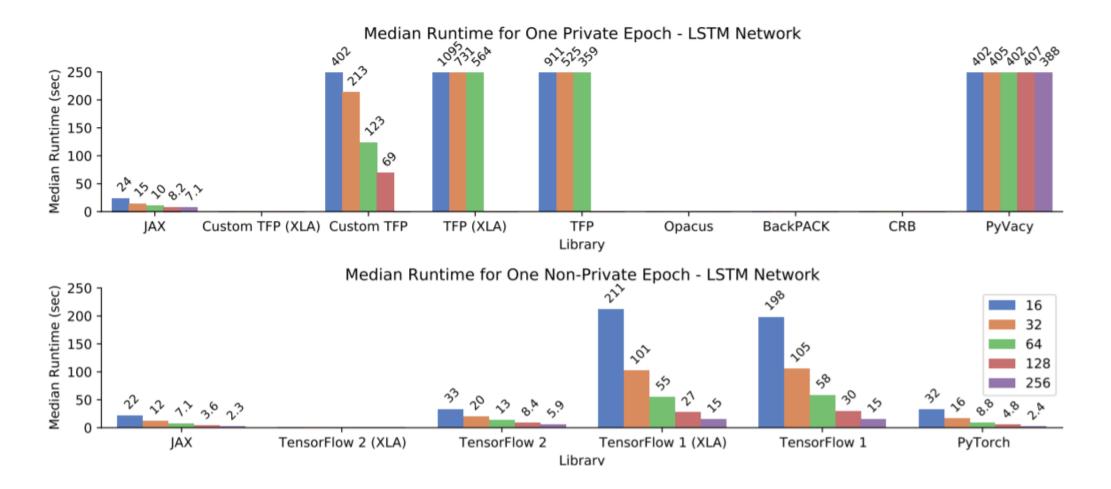


Does it work?

Test Accuracy (%)

Data	ε -DP	Source	CNN	ScatterNet+linear	ScatterNet+CNN
MNIST	1.2 2.0 2.32 2.5 2.93 3.2 6.78	Feldman & Zrnic (2020) Abadi et al. (2016) Bu et al. (2019) Chen & Lee (2020) Papernot et al. (2020a) Nasr et al. (2020) Yu et al. (2019b)	$\frac{96.6}{95.0} \\ 96.6 \\ 90.0 \\ \underline{98.1} \\ 96.1 \\ 93.2$	$\begin{array}{c} 98.1 \pm 0.1 \\ 98.5 \pm 0.0 \\ 98.6 \pm 0.0 \\ 98.7 \pm 0.0 \\ 98.7 \pm 0.0 \\ - \\ - \end{array}$	$\begin{array}{c} 97.8 \pm 0.1 \\ \textbf{98.4} \pm \textbf{0.1} \\ 98.5 \pm 0.0 \\ 98.6 \pm 0.0 \\ \textbf{98.7} \pm \textbf{0.1} \end{array}$
Fashion-MNIST	2.7 3.0	Papernot et al. (2020a) Chen & Lee (2020)	$\tfrac{86.1}{82.3}$	${\begin{array}{c} {\bf 89.5 \pm 0.0} \\ {\bf 89.7 \pm 0.0} \end{array}}$	$88.7 \pm 0.1 \\ 89.0 \pm 0.1$
CIFAR-10	3.0 6.78 7.53 8.0	Nasr et al. (2020) Yu et al. (2019b) Papernot et al. (2020a) Chen & Lee (2020)	$\frac{55.0}{44.3}$ $\frac{66.2}{53.0}$	67.0 ± 0.1 - -	$\begin{array}{c} 69.3 \pm 0.2 \\ - \\ - \\ - \\ - \\ - \end{array}$

DPSGD can be slow!



[Subramani-Vadivelu-K. '20]

Architectures for DPSGD

- Tanh >> ReLU? [Papernot-Thakurta-Song-Chien-Erlingsson '21]
- Bigger models are not always better

Hyperparameters

- Even more hyperparameters
 - Learning rate, lot size, clipping norm, number of epochs, noise multiplier
- Non-private way: grid search, measure accuracy on validation set
- Pay in privacy budget for each run!
- Options:
 - Private methods for hyperparameter optimization [Liu-Talwar '19]
 - Transfer hyperparameters from related public data
 - Cheat and ignore privacy budget for multiple runs...

Conclusion

- Private machine learning is here!
- But there's still a lot of work to do...