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Vector space

>
>

This is our universe for most ML problems.

Allow us to use linear algebra / calculus tools.

Euclidean space

>

VVVYyVvVVVYyVYVYY

v € R% is identified with a d-tuple: v = (vy,va,...

Addition and multiplication are element-wise
u+v=(up +v,us+va,...,uq+ vq);
u+ (v+w)=(u+v)+w;
0=(0,0,...,0), v+0=v;

—v = (—v1,—V2,,...,—0q), v—v =0;
a(bv) = (ab)v;
av = (avi,avy, . ..,avq);

a(u+v) =au+av;
(a+b)v=av+bv.
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Convex set

> A point set C C R¢ is called convex if

Vx,z € C, [x,z] :=={ x4+ (1—-Nz: e [0,1]} CC.

convex combination

» Intersection of convex sets is convex. Unions are usually not.
> Finite intersection of halfspaces is called polyhedron.

» Any (closed) convex set is an (infinite) intersection of halfspaces.
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https://en.wikipedia.org/wiki/Convex_set

Convex function

» A function f: C — R is called convex if

» domain C' is a convex set,
> for all x,z € C, for all A € (0,1), Jensen’s inequality holds:

JOx+ (1= XNz) < Af(x) + (1= A)f(2).

> We call f strictly convex iff equality holds only when x = z.
» A function f is (strictly) concave iff —f is (strictly) convex.

9(+) 4 q(-)
Convex Concave
0y x v
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https://en.wikipedia.org/wiki/Convex_function
https://en.wikipedia.org/wiki/Jensen%27s_inequality

Verifying convexity

> Let f:R? — R be twice differentiable. Then f is convex iff its
Hessian V2 is always positive semidefinite. If the Hessian is always
positive definite, then f is strictly convex.

Example
f(z) = x* is strictly convex but f”(0) = 0.

» convex function has increasing derivative along any direction d,
starting from any point x.

6/25


https://en.wikipedia.org/wiki/Definiteness_of_a_matrix

Calculus of convexity

» Epigraph of any function epi f := {(x,t) € C' x R : f(x) < t}.

» fis a convex function iff epi f is a convex set!

» Any norm is convex;

» If f and g are convex, then for any o, B3 > 0, af + (B¢ is also convex;
(what about —f7)

> If [ R% — R is convex, then so is w — f(Aw + b);

» If f; is convex for all t € T', then f := maxscr fi is convex;

» If f(x,t) is jointly convex in x and ¢, then x — minser f(x,t) is
convex;

» If f:C — R is convex, then the perspective function
g(x,t) :=tf(x/t) is convex on C' x Ryy;
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https://en.wikipedia.org/wiki/Epigraph_(mathematics)

Fenchel conjugate function

The Fenchel conjugate of any function f is:
£7(x) = mae x, x) — £(x).

» According to one of the calculus rules, f* is always convex.

» If dom f is closed and f is continuous & convex:

f** - (f*)* — f‘-

(vo, £ (0))
Hy () =2v—f"(2)
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https://en.wikipedia.org/wiki/Closed_set

Optimization

Consider a function f : R?% — R, we are interested in the minimization
problem:

p* i= min f(X)7

xeC
where C' C R? represents the constraints that x must satisfy.

» The minimum value p, is an extended real number in [—o0, o]
(where p,. = oo iff C' = 0).

» When p, is finite, any feasible x, € C such that f(x.) = p. is called
a (global) minimizer, in notation x, € argmingcc f(X).

» Minimum value always exists while minimizers may not!

» When x, minimizes f over a (small) neighborhood in C, we call it
local minimizer.

» Global is local and the converse is true under convexity.
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The importance of convexity

Convex Non-Convex

Local min

Minimizer Global min
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Properties of minimizing/maximizing

» If x is a local (global) minimizer (maximizer) of f, then it is a local
(global) minimizer (maximizer) of g(f) for any increasing function
g : R — R. And vice versa if g is strictly increasing.

» x is a local (global) minimizer of f iff x is a local (global) minimizer
of \f +cforany A >0 and c € R.

» x is a local (global) minimizer (maximizer) of a positive function f
iff it is a local (global) minimizer (maximizer) of log f.

» x is a local (global) minimizer (maximizer) of a positive function f
iff it is a local (global) maximizer (minimizer) of 1/f.

» x is a local (global) minimizer of f iff x is a local (global) maximizer

of —f.
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The epigrap

h trick

Often, we rewrite the optimization problem

as the equival

where the newly introduced variable ¢ is jointly optimized with x.
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Gradient and Hessian

For a smooth function f : R — R, its
» gradient Vf = (01f,...,04f) € R%
» Hessian V2f € R4 with [ng]lj = alajf = 8J81f

» match dimensions; gradient always has same size as input x.

Example
Consider the quadratic function f(x) = x'Qx +p'x + a:
> input x € R
> Q< RdXd,p e R o eR are given constants.
> Vi=(Q+Q")x+peR%
> v2f:Q+QT ERdXd.

» memorize them!
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Fermat's necessary condition

A necessary condition for x to be a local minimizer of a smooth function
f:RY > Ris

Vf(x)=0.

(Such points are called stationary, a.k.a. critical.) If f is convex, then the
necessary condition is also sufficient.

Similarly, at a local minimizer we necessarily have V2f(x) = 0.

> Fermat's condition gives us a goal in optimization: how do we verify
the (sub)optimality of candidate solution x?

» There cannot be any constraints!
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https://en.wikipedia.org/wiki/Pierre_de_Fermat

The difficulty of satisfying a constraint

Consider the trivial problem:

min m2,
x>1

which (clearly) admits a unique minimizer z, = 1.

However, if we ignore the constraint 2 > 1 and set the derivative to zero
we would obtain 2z = 0, which does not satisfy the constraint!

» We can apply Fermat's condition only when there is no constraint.

» We will introduce the Lagrangian to “remove” constraints.
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Algorithm of feasible direction

Input: x¢ € dom f
fort=0,1,...do

choose direction d; // e.g. limsup(d:, Vf(x¢)) >0
t—o0
choose step size 1, > 0
Xpp1 = X¢ — rdy // update
xt+1 = Po(xt41) // optional projection step
end

» Apply Taylor's expansion:

f(xt41) = f(xe —mde) = f(x¢) — e (de, Vf(xt)) + o(me),

» If (d¢, Vf(x¢)) > 0 and n; is small, then f(x;41) < f(x¢), i.e. the
algorithm is descending
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https://en.wikipedia.org/wiki/Taylor%27s_theorem

Choices

vy

vVvYyyvyy

Gradient Descent (GD): dy = V f(x¢);
Newton: d; = [V2f(x:)] 1V f(x¢);
Stochastic Gradient Descent (SGD): d¢ = &, E(&) = Vf(xy).

Cauchy’s rule n; € argmin, > f(x; — nd;).

Curry’s rule n, = inf{n > 0: f'(x; — nd;) = 0}.

Constant rule: ;=1 >0, e.g. € (0,1/[|V2f]lsp)-
Summable rule: >°,m = 00, >, n7 < o0, e.g. i = O(1/t).
Diminishing rule: Y, n: = oo, limgm: = 0, e.g. n: = O(1/V/1).
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Some subtleties

> f(x¢) typically converges, but x; itself may not.

» f(x¢) may not converge to a stationary point even when

f(xe1) < f(xe)!

» even when f(x;) converges to a stationary point, it may not be a
local minimizer. Randomness helps!
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Lagrangian
Consider the canonical optimization problem:

min f(x)

xeR4
s.t. g(x) <0,
h(x) =0,
wheref:IRd—HR,g:]Rd%]R”, and h: R — R™.
» Cannot apply Fermat's condition due to the constraints.

Introduce the Lagrangian multipliers (a.k.a. dual variables) p € R},
v € R to move constraints into the Lagrangian:

L(x; p,v) = f(x) + p' g(x) + v h(x).
We can now rewrite the original problem as the fancy min-max problem:

= min max L(x;u,v).
b= I gy, HOs )
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Swapping the min with max

The Lagrangian dual simply swaps the order of min and max:

0* := max min L(x;p,v).
n2>0,v xcR4

(Here 0 stands for dual, while p stands for primal.)

>

v

The dimension of the dual variable p is the number of inequality
constraints.

The dimension of v is the number of equality constraints.
Both are different from the dimension of the (primal) variable x.

There is no constraint on x in the dual problem, implicit or explicit!

Weak duality: miny maxy, f(x,y) > maxyming f(x,y)

Strong duality, e.g. equality attained, relies on convexity and some
regularity.
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The dual problem

The inner minimization in the dual can usually be solved in closed-form:

X(p,v) := argmin L(x; p,v).
x€R4

Plugging any minimizer X(u,v) back we obtain the dual problem:

L(X S, V).
B (X(p,v); s v)

» The original problem had complicated constraints g(x) < 0.
» The dual problem has only 1 simple nonnegative constraint p > 0.

» Why not try to solve the Lagrangian dual instead, then recover a
primal solution X(u,v) above!

» Good idea but see some caveats in the note.
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KKT conditions

v

primal feasibility: g(x) <0, h(x) = 0;
dual feasibility: p > 0;

stationarity:

)+ Z wiVgi(x) + Z vjVh;(x

complementary slackness: (u,g(x)) = 0.
» combined with primal and dual feasibility, we have in fact

Vi=1,...,n, pigi(x)=0.

KKT conditions are necessary; they give us a goal in optimization.

They are also sufficient if g; are convex, h; are affine and some
regularity condition holds.
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(Kernel) ridge regression
Recall ridge regression:

min 3z)3 + 3| wl)3
s.t. Xw—y =z,

where we introduced an “artificial” constraint (and variable z).
» Derive the Lagrangian dual:

maxmin 323+ 3wl + a7 (Xw —y - 2).
> Applying Fermat's condition to the inner minimization problem:
w,=—-X"a/\ z,=a«a
» Plugging it back in (and simplify) we obtain the dual:
max — 2 X a3 - aTy - §lad3
> Applying Fermat's condition again we obtain:
o = —(XX"/A+1D)ty.
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Gradient descent ascent (GDA)

min max f(x,y)

xeX yeY

Input: (x0,y0) € dom fNX xY
S_1 = 0, ()7(,1.}7,1) = (0 0)
fort=0,1,... do
choose step size n; > 0
Xe41 = Px[x: — 0V f (X1, 1))
Vir1 = Py[ye + mVy f (x4, y1)]
St = St—1+ 1Nt
(5({. S’f) _ St—1(Xe—1 YVi—1)+n: (xe,y¢)
2 S,
end

// optional

// GD on minimization
// GA on maximization

// averaging

The last step incrementally performs averaging:

t

(%6, ¥1) = Y e(Xks Y8/ D e
p

k=1
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Variations of GDA

> use different step sizes on x and y;

» use x;4+1 in the update on y (or vice versa);
> use stochastic gradients in both steps;
>

after every update in x, perform k updates in y (or vice versa);
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