CS480/680: Introduction to Machine Learning Lecture 03: Optimization Basics

Yaoliang Yu

University of Waterloo

May 19, 2020

Vector space

- ► This is our universe for most ML problems.
- Allow us to use linear algebra / calculus tools.

Euclidean space

- $\mathbf{v} \in \mathbb{R}^d$ is identified with a *d*-tuple: $\mathbf{v} = (v_1, v_2, \dots, v_d)$.
- Addition and multiplication are element-wise

•
$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, \dots, u_d + v_d);$$

• $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w};$
• $\mathbf{0} = (0, 0, \dots, 0), \mathbf{v} + \mathbf{0} = \mathbf{v};$
• $-\mathbf{v} = (-v_1, -v_2, \dots, -v_d), \mathbf{v} - \mathbf{v} = \mathbf{0};$
• $a(b\mathbf{v}) = (ab)\mathbf{v};$
• $a(b\mathbf{v}) = (ab)\mathbf{v};$
• $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v};$
• $(a + b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}.$

Convex set

• A point set
$$C \subseteq \mathbb{R}^d$$
 is called convex if
 $\forall \mathbf{x}, \mathbf{z} \in C, \ [\mathbf{x}, \mathbf{z}] := \underbrace{\{\lambda \mathbf{x} + (1 - \lambda)\mathbf{z} : \lambda \in [0, 1]\}}_{\text{convex combination}} \subseteq C.$

Intersection of convex sets is convex. Unions are usually not.

- Finite intersection of halfspaces is called polyhedron.
- Any (closed) convex set is an (*infinite*) intersection of halfspaces.

Convex function

- A function $f: C \to \mathbb{R}$ is called convex if
 - domain C is a convex set,
 - ▶ for all $\mathbf{x}, \mathbf{z} \in C$, for all $\lambda \in (0, 1)$, Jensen's inequality holds:

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{z}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{z}).$$

We call f strictly convex iff equality holds only when x = z.
A function f is (strictly) concave iff -f is (strictly) convex.

Verifying convexity

▶ Let $f : \mathbb{R}^d \to \mathbb{R}$ be twice differentiable. Then f is convex iff its Hessian $\nabla^2 f$ is always positive semidefinite. If the Hessian is always positive definite, then f is strictly convex.

Example

$$f(x) = x^4$$
 is strictly convex but $f''(0) = 0$.

convex function has increasing derivative along any direction d, starting from any point x.

Calculus of convexity

- Epigraph of any function $epi f := \{(\mathbf{x}, t) \in \mathbf{C} \times \mathbb{R} : f(\mathbf{x}) \le t\}.$
- f is a convex function iff epi f is a convex set!
- Any norm is convex;
- ▶ If f and g are convex, then for any $\alpha, \beta \ge 0$, $\alpha f + \beta g$ is also convex; (what about -f?)
- If $f : \mathbb{R}^d \to \mathbb{R}$ is convex, then so is $\mathbf{w} \mapsto f(A\mathbf{w} + \mathbf{b})$;
- ▶ If f_t is convex for all $t \in T$, then $f := \max_{t \in T} f_t$ is convex;
- ▶ If $f(\mathbf{x},t)$ is jointly convex in \mathbf{x} and t, then $\mathbf{x} \mapsto \min_{t \in T} f(\mathbf{x},t)$ is convex;
- ▶ If $f: C \to \mathbb{R}$ is convex, then the perspective function $g(\mathbf{x}, t) := tf(\mathbf{x}/t)$ is convex on $C \times \mathbb{R}_{++}$;

Fenchel conjugate function

The Fenchel conjugate of any function f is:

$$f^*(\mathbf{x}^*) := \max_{\mathbf{x}} \langle \mathbf{x}, \mathbf{x}^* \rangle - f(\mathbf{x}).$$

According to one of the calculus rules, f* is always convex.
If dom f is closed and f is continuous & convex:

 $f^{**} := (f^*)^* = f.$

Optimization

Consider a function $f:\mathbb{R}^d\to\mathbb{R},$ we are interested in the minimization problem:

$$\mathfrak{p}_* := \min_{\mathbf{x} \in C} f(\mathbf{x}),$$

where $C \subseteq \mathbb{R}^d$ represents the constraints that \mathbf{x} *must* satisfy.

- The minimum value p_{*} is an extended real number in [-∞, ∞] (where p_{*} = ∞ iff C = Ø).
- When p_{*} is finite, any feasible x_{*} ∈ C such that f(x_{*}) = p_{*} is called a (global) minimizer, in notation x_{*} ∈ argmin_{x∈C} f(x).
- Minimum value always exists while minimizers may not!
- When x_{*} minimizes f over a (small) neighborhood in C, we call it local minimizer.
- Global is local and the converse is true under convexity.

The importance of convexity

Properties of minimizing/maximizing

- If x is a local (global) minimizer (maximizer) of f, then it is a local (global) minimizer (maximizer) of g(f) for any increasing function g : R → R. And vice versa if g is strictly increasing.
- ▶ x is a local (global) minimizer of f iff x is a local (global) minimizer of $\lambda f + c$ for any $\lambda > 0$ and $c \in \mathbb{R}$.
- ▶ x is a local (global) minimizer (maximizer) of a positive function f iff it is a local (global) minimizer (maximizer) of log f.
- x is a local (global) minimizer (maximizer) of a positive function f iff it is a local (global) maximizer (minimizer) of 1/f.
- ➤ x is a local (global) minimizer of f iff x is a local (global) maximizer of -f.

The epigraph trick

Often, we rewrite the optimization problem

 $\min_{\mathbf{x}\in C} f(\mathbf{x})$

as the equivalent one:

 $\min_{(\mathbf{x},t)\in \mathrm{epi}\,f\cap C\times\mathbb{R}}\ t,$

where the newly introduced variable t is jointly optimized with x.

Gradient and Hessian

For a *smooth* function $f : \mathbb{R}^d \to \mathbb{R}$, its

- gradient $\nabla f = (\partial_1 f, \dots, \partial_d f) \in \mathbb{R}^d$.
- Hessian $\nabla^2 f \in \mathbb{R}^{d \times d}$ with $[\nabla^2 f]_{ij} = \partial_i \partial_j f = \partial_j \partial_i f$.
- match dimensions; gradient always has same size as input x.

Example

Consider the quadratic function $f(\mathbf{x}) = \mathbf{x}^{\top} Q \mathbf{x} + \mathbf{p}^{\top} \mathbf{x} + \alpha$:

- ▶ input $\mathbf{x} \in \mathbb{R}^d$.
- $\blacktriangleright \ Q \in \mathbb{R}^{d \times d}, \mathbf{p} \in \mathbb{R}^{d}, \alpha \in \mathbb{R} \text{ are given constants.}$

$$\blacktriangleright \nabla f = (Q + Q^{\top})\mathbf{x} + \mathbf{p} \in \mathbb{R}^d.$$

$$\blacktriangleright \nabla^2 f = Q + Q^\top \in \mathbb{R}^{d \times d}.$$

memorize them!

Fermat's necessary condition

A necessary condition for ${\bf x}$ to be a local minimizer of a smooth function $f: {\mathbb R}^d \to {\mathbb R}$ is

$$\nabla f(\mathbf{x}) = \mathbf{0}.$$

(Such points are called stationary, a.k.a. critical.) If f is convex, then the necessary condition is also sufficient.

Similarly, at a local minimizer we necessarily have $\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$.

- Fermat's condition gives us a goal in optimization: how do we verify the (sub)optimality of candidate solution x?
- There cannot be any constraints!

The difficulty of satisfying a constraint

Consider the trivial problem:

$$\min_{\substack{x \ge 1}} x^2,$$

which (clearly) admits a unique minimizer $x_{\star} = 1$.

However, if we ignore the constraint $x \ge 1$ and set the derivative to zero we would obtain x = 0, which does not satisfy the constraint!

▶ We can apply Fermat's condition only when there is no constraint.

▶ We will introduce the Lagrangian to "remove" constraints.

Algorithm of feasible direction

end

Apply Taylor's expansion:

$$f(\mathbf{x}_{t+1}) = f(\mathbf{x}_t - \eta_t \mathbf{d}_t) = f(\mathbf{x}_t) - \eta_t \left\langle \mathbf{d}_t, \nabla f(\mathbf{x}_t) \right\rangle + o(\eta_t),$$

▶ If $\langle \mathbf{d}_t, \nabla f(\mathbf{x}_t) \rangle > 0$ and η_t is small, then $f(\mathbf{x}_{t+1}) < f(\mathbf{x}_t)$, i.e. the algorithm is descending

Choices

- Gradient Descent (GD): $\mathbf{d}_t = \nabla f(\mathbf{x}_t)$;
- Newton: $\mathbf{d}_t = [\nabla^2 f(\mathbf{x}_t)]^{-1} \nabla f(\mathbf{x}_t);$
- Stochastic Gradient Descent (SGD): $\mathbf{d}_t = \xi_t$, $\mathsf{E}(\xi_t) = \nabla f(\mathbf{x}_t)$.

▶ Diminishing rule:
$$\sum_t \eta_t = \infty$$
, $\lim_t \eta_t = 0$, e.g. $\eta_t = O(1/\sqrt{t})$.

Some subtleties

- $f(\mathbf{x}_t)$ typically converges, but \mathbf{x}_t itself may not.
- $f(\mathbf{x}_t)$ may not converge to a stationary point even when $f(\mathbf{x}_{t+1}) < f(\mathbf{x}_t)!$
- even when $f(\mathbf{x}_t)$ converges to a stationary point, it may not be a local minimizer. Randomness helps!

Lagrangian

Consider the canonical optimization problem:

 $\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$ s.t. $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$, $\mathbf{h}(\mathbf{x}) = \mathbf{0}$,

where $f : \mathbb{R}^d \to \mathbb{R}$, $\mathbf{g} : \mathbb{R}^d \to \mathbb{R}^n$, and $\mathbf{h} : \mathbb{R}^d \to \mathbb{R}^m$.

Cannot apply Fermat's condition due to the constraints.

Introduce the Lagrangian multipliers (a.k.a. dual variables) $\mu \in \mathbb{R}^n_+$, $\nu \in \mathbb{R}^m$ to move constraints into the Lagrangian:

$$L(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\nu}) := f(\mathbf{x}) + \boldsymbol{\mu}^{\top} \mathbf{g}(\mathbf{x}) + \boldsymbol{\nu}^{\top} \mathbf{h}(\mathbf{x}).$$

We can now rewrite the original problem as the fancy min-max problem:

$$\mathfrak{p}_{\star} := \min_{\mathbf{x} \in \mathbb{R}^d} \max_{\boldsymbol{\mu} \ge \mathbf{0}, \boldsymbol{\nu}} L(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\nu}).$$

Swapping the min with max

The Lagrangian dual simply swaps the order of min and max:

 $\mathfrak{d}^{\star} := \max_{\boldsymbol{\mu} \geq \mathbf{0}, \boldsymbol{\nu}} \min_{\mathbf{x} \in \mathbb{R}^d} L(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\nu}).$

(Here ϑ stands for dual, while \mathfrak{p} stands for primal.)

- The dimension of the dual variable μ is the number of inequality constraints.
- The dimension of ν is the number of equality constraints.
- Both are different from the dimension of the (primal) variable x.
- There is no constraint on x in the dual problem, implicit or explicit!
- $\blacktriangleright \ {\sf Weak \ duality: \ \min_{\mathbf{x}} \max_{\mathbf{y}} \ f(\mathbf{x},\mathbf{y}) \ \geq \ \max_{\mathbf{y}} \min_{\mathbf{x}} \ f(\mathbf{x},\mathbf{y})$

Strong duality, e.g. equality attained, relies on convexity and some regularity.

The dual problem

The inner minimization in the dual can usually be solved in closed-form:

$$\mathfrak{X}(\boldsymbol{\mu},\boldsymbol{\nu}) := \underset{\mathbf{x} \in \mathbb{R}^d}{\operatorname{argmin}} \ L(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\nu}).$$

Plugging any minimizer $\mathfrak{X}(oldsymbol{\mu},oldsymbol{
u})$ back we obtain the dual problem:

$$\max_{\boldsymbol{\mu}\in\mathbb{R}^n_+,\boldsymbol{\nu}\in\mathbb{R}^m} L(\mathfrak{X}(\boldsymbol{\mu},\boldsymbol{\nu});\boldsymbol{\mu},\boldsymbol{\nu}).$$

- The original problem had complicated constraints $\mathbf{g}(\mathbf{x}) \leq 0$.
- The dual problem has only 1 simple nonnegative constraint $\mu \ge 0$.
- Why not try to solve the Lagrangian dual instead, then recover a primal solution $\mathfrak{X}(\mu, \nu)$ above!
- Good idea but see some caveats in the note.

KKT conditions

- primal feasibility: $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}, \ h(\mathbf{x}) = \mathbf{0};$
- dual feasibility: $\mu \ge 0$;
- stationarity:

$$\nabla f(\mathbf{x}) + \sum_{i=1}^{n} \mu_i \nabla g_i(\mathbf{x}) + \sum_{j=1}^{m} \nu_j \nabla h_j(\mathbf{x}) = \mathbf{0};$$

• complementary slackness: $\langle \boldsymbol{\mu}, \mathbf{g}(\mathbf{x}) \rangle = 0.$

combined with primal and dual feasibility, we have in fact

$$\forall i = 1, \dots, n, \quad \mu_i g_i(\mathbf{x}) = 0.$$

- ► KKT conditions are necessary; they give us a goal in optimization.
- They are also sufficient if g_i are convex, h_j are affine and some regularity condition holds.

(Kernel) ridge regression

Recall ridge regression:

$$\min_{\mathbf{w},\mathbf{z}} \frac{1}{2} \|\mathbf{z}\|_2^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

s.t. $X\mathbf{w} - \mathbf{y} = \mathbf{z},$

where we *introduced* an "artificial" constraint (and variable z).

Derive the Lagrangian dual:

$$\max_{\boldsymbol{\alpha}} \min_{\mathbf{w},\mathbf{z}} \frac{1}{2} \|\mathbf{z}\|_{2}^{2} + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} + \boldsymbol{\alpha}^{\top} (X\mathbf{w} - \mathbf{y} - \mathbf{z}),$$

Applying Fermat's condition to the inner minimization problem:

$$\mathbf{w}_{\star} = -X^{\top} \boldsymbol{\alpha} / \lambda, \ \mathbf{z}_{\star} = \boldsymbol{\alpha}$$

Plugging it back in (and simplify) we obtain the dual:

$$\max_{\boldsymbol{\alpha}} - \frac{1}{2\lambda} \| X^{\top} \boldsymbol{\alpha} \|_{2}^{2} - \boldsymbol{\alpha}^{\top} \mathbf{y} - \frac{1}{2} \| \boldsymbol{\alpha} \|_{2}^{2}$$

Applying Fermat's condition again we obtain:

$$\boldsymbol{\alpha}^{\star} = -(\boldsymbol{X}\boldsymbol{X}^{\top}/\lambda + \boldsymbol{I})^{-1}\mathbf{y}.$$

Gradient descent ascent (GDA)

 $\min_{\mathbf{x}\in\mathsf{X}} \max_{\mathbf{y}\in\mathsf{Y}} f(\mathbf{x},\mathbf{y})$

end

The last step incrementally performs averaging:

$$(\bar{\mathbf{x}}_t, \bar{\mathbf{y}}_t) = \sum_{k=1}^t \eta_k(\mathbf{x}_k, \mathbf{y}_k) / \sum_k \eta_k$$

Variations of GDA

- use different step sizes on x and y;
- use \mathbf{x}_{t+1} in the update on \mathbf{y} (or vice versa);
- use stochastic gradients in both steps;
- after every update in x, perform k updates in y (or vice versa);

