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Vector space
I This is our universe for most ML problems.
I Allow us to use linear algebra / calculus tools.

Euclidean space
I v ∈ Rd is identified with a d-tuple: v = (v1, v2, . . . , vd).
I Addition and multiplication are element-wise
I u + v = (u1 + v1, u2 + v2, . . . , ud + vd);
I u + (v + w) = (u + v) + w;
I 0 = (0, 0, . . . , 0), v + 0 = v;
I −v = (−v1,−v2, , . . . ,−vd), v − v = 0;
I a(bv) = (ab)v;
I av = (av1, av2, . . . , avd);
I a(u + v) = au + av;
I (a+ b)v = av + bv.
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Convex set

I A point set C ⊆ Rd is called convex if

∀x, z ∈ C, [x, z] := {λx + (1− λ)z : λ ∈ [0, 1]}︸ ︷︷ ︸
convex combination

⊆ C.

I Intersection of convex sets is convex. Unions are usually not.
I Finite intersection of halfspaces is called polyhedron.
I Any (closed) convex set is an (infinite) intersection of halfspaces.
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https://en.wikipedia.org/wiki/Convex_set


Convex function

I A function f : C → R is called convex if
I domain C is a convex set,
I for all x, z ∈ C, for all λ ∈ (0, 1), Jensen’s inequality holds:

f(λx + (1− λ)z) ≤ λf(x) + (1− λ)f(z).

I We call f strictly convex iff equality holds only when x = z.
I A function f is (strictly) concave iff −f is (strictly) convex.
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https://en.wikipedia.org/wiki/Convex_function
https://en.wikipedia.org/wiki/Jensen%27s_inequality


Verifying convexity

I Let f : Rd → R be twice differentiable. Then f is convex iff its
Hessian ∇2f is always positive semidefinite. If the Hessian is always
positive definite, then f is strictly convex.

Example
f(x) = x4 is strictly convex but f ′′(0) = 0.

I convex function has increasing derivative along any direction d,
starting from any point x.
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https://en.wikipedia.org/wiki/Definiteness_of_a_matrix


Calculus of convexity

I Epigraph of any function epi f := {(x, t) ∈ C ×R : f(x) ≤ t}.
I f is a convex function iff epi f is a convex set!
I Any norm is convex;
I If f and g are convex, then for any α, β ≥ 0, αf + βg is also convex;

(what about −f?)
I If f : Rd → R is convex, then so is w 7→ f(Aw + b);
I If ft is convex for all t ∈ T , then f := maxt∈T ft is convex;
I If f(x, t) is jointly convex in x and t, then x 7→ mint∈T f(x, t) is

convex;
I If f : C → R is convex, then the perspective function
g(x, t) := tf(x/t) is convex on C ×R++;
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https://en.wikipedia.org/wiki/Epigraph_(mathematics)


Fenchel conjugate function
The Fenchel conjugate of any function f is:

f∗(x∗) := max
x
〈x,x∗〉 − f(x).

I According to one of the calculus rules, f∗ is always convex.
I If dom f is closed and f is continuous & convex:

f∗∗ := (f∗)∗ = f.

8 / 25

https://en.wikipedia.org/wiki/Closed_set


Optimization

Consider a function f : Rd → R, we are interested in the minimization
problem:

p∗ := min
x∈C

f(x),

where C ⊆ Rd represents the constraints that x must satisfy.

I The minimum value p∗ is an extended real number in [−∞,∞]
(where p∗ =∞ iff C = ∅).

I When p∗ is finite, any feasible x∗ ∈ C such that f(x∗) = p∗ is called
a (global) minimizer, in notation x∗ ∈ argminx∈C f(x).

I Minimum value always exists while minimizers may not!
I When x∗ minimizes f over a (small) neighborhood in C, we call it

local minimizer.
I Global is local and the converse is true under convexity.
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The importance of convexity
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Properties of minimizing/maximizing

I If x is a local (global) minimizer (maximizer) of f , then it is a local
(global) minimizer (maximizer) of g(f) for any increasing function
g : R→ R. And vice versa if g is strictly increasing.

I x is a local (global) minimizer of f iff x is a local (global) minimizer
of λf + c for any λ > 0 and c ∈ R.

I x is a local (global) minimizer (maximizer) of a positive function f
iff it is a local (global) minimizer (maximizer) of log f .

I x is a local (global) minimizer (maximizer) of a positive function f
iff it is a local (global) maximizer (minimizer) of 1/f .

I x is a local (global) minimizer of f iff x is a local (global) maximizer
of −f .
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The epigraph trick
Often, we rewrite the optimization problem

min
x∈C

f(x)

as the equivalent one:
min

(x,t)∈epi f∩C×R
t,

where the newly introduced variable t is jointly optimized with x.
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Gradient and Hessian

For a smooth function f : Rd → R, its
I gradient ∇f = (∂1f, . . . , ∂df) ∈ Rd.
I Hessian ∇2f ∈ Rd×d with [∇2f ]ij = ∂i∂jf = ∂j∂if .
I match dimensions; gradient always has same size as input x.

Example
Consider the quadratic function f(x) = x>Qx + p>x + α:
I input x ∈ Rd.
I Q ∈ Rd×d,p ∈ Rd, α ∈ R are given constants.
I ∇f = (Q+Q>)x + p ∈ Rd.
I ∇2f = Q+Q> ∈ Rd×d.
I memorize them!
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Fermat’s necessary condition

A necessary condition for x to be a local minimizer of a smooth function
f : Rd → R is

∇f(x) = 0.

(Such points are called stationary, a.k.a. critical.) If f is convex, then the
necessary condition is also sufficient.

Similarly, at a local minimizer we necessarily have ∇2f(x) � 0.

I Fermat’s condition gives us a goal in optimization: how do we verify
the (sub)optimality of candidate solution x?

I There cannot be any constraints!
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https://en.wikipedia.org/wiki/Pierre_de_Fermat


The difficulty of satisfying a constraint

Consider the trivial problem:

min
x≥1

x2,

which (clearly) admits a unique minimizer x? = 1.

However, if we ignore the constraint x ≥ 1 and set the derivative to zero
we would obtain x = 0, which does not satisfy the constraint!

I We can apply Fermat’s condition only when there is no constraint.
I We will introduce the Lagrangian to “remove” constraints.
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Algorithm of feasible direction

Input: x0 ∈ dom f
for t = 0, 1, . . . do

choose direction dt // e.g. lim sup
t→∞

〈dt,∇f(xt)〉 > 0

choose step size ηt > 0
xt+1 = xt − ηtdt // update
xt+1 = PC(xt+1) // optional projection step

end

I Apply Taylor’s expansion:

f(xt+1) = f(xt − ηtdt) = f(xt)− ηt 〈dt,∇f(xt)〉+ o(ηt),

I If 〈dt,∇f(xt)〉 > 0 and ηt is small, then f(xt+1) < f(xt), i.e. the
algorithm is descending
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https://en.wikipedia.org/wiki/Taylor%27s_theorem


Choices

I Gradient Descent (GD): dt = ∇f(xt);
I Newton: dt = [∇2f(xt)]

−1∇f(xt);
I Stochastic Gradient Descent (SGD): dt = ξt, E(ξt) = ∇f(xt).

I Cauchy’s rule ηt ∈ argminη≥0 f(xt − ηdt).
I Curry’s rule ηt = inf{η ≥ 0 : f ′(xt − ηdt) = 0}.
I Constant rule: ηt ≡ η > 0, e.g. η ∈ (0, 1/‖∇2f‖sp).
I Summable rule:

∑
t ηt =∞,

∑
t η

2
t <∞, e.g. ηt = O(1/t).

I Diminishing rule:
∑

t ηt =∞, limt ηt = 0, e.g. ηt = O(1/
√
t).
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Some subtleties

I f(xt) typically converges, but xt itself may not.

I f(xt) may not converge to a stationary point even when
f(xt+1) < f(xt)!

I even when f(xt) converges to a stationary point, it may not be a
local minimizer. Randomness helps!
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Lagrangian
Consider the canonical optimization problem:

min
x∈Rd

f(x)

s.t. g(x)≤ 0,

h(x) = 0,

where f : Rd → R, g : Rd → Rn, and h : Rd → Rm.
I Cannot apply Fermat’s condition due to the constraints.

Introduce the Lagrangian multipliers (a.k.a. dual variables) µ ∈ Rn+,
ν ∈ Rm to move constraints into the Lagrangian:

L(x;µ,ν) := f(x) + µ>g(x) + ν>h(x).

We can now rewrite the original problem as the fancy min-max problem:

p? := min
x∈Rd

max
µ≥0,ν

L(x;µ,ν).
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Swapping the min with max

The Lagrangian dual simply swaps the order of min and max:

d? := max
µ≥0,ν

min
x∈Rd

L(x;µ,ν).

(Here d stands for dual, while p stands for primal.)

I The dimension of the dual variable µ is the number of inequality
constraints.

I The dimension of ν is the number of equality constraints.
I Both are different from the dimension of the (primal) variable x.
I There is no constraint on x in the dual problem, implicit or explicit!

I Weak duality: minx maxy f(x,y) ≥ maxy minx f(x,y)

I Strong duality, e.g. equality attained, relies on convexity and some
regularity.
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The dual problem

The inner minimization in the dual can usually be solved in closed-form:

X(µ,ν) := argmin
x∈Rd

L(x;µ,ν).

Plugging any minimizer X(µ,ν) back we obtain the dual problem:

max
µ∈Rn

+,ν∈Rm
L(X(µ,ν);µ,ν).

I The original problem had complicated constraints g(x) ≤ 0.
I The dual problem has only 1 simple nonnegative constraint µ ≥ 0.
I Why not try to solve the Lagrangian dual instead, then recover a

primal solution X(µ,ν) above!

I Good idea but see some caveats in the note.
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KKT conditions

I primal feasibility: g(x) ≤ 0, h(x) = 0;

I dual feasibility: µ ≥ 0;

I stationarity:

∇f(x) +

n∑
i=1

µi∇gi(x) +

m∑
j=1

νj∇hj(x) = 0;

I complementary slackness: 〈µ,g(x)〉 = 0.
I combined with primal and dual feasibility, we have in fact

∀i = 1, . . . , n, µigi(x) = 0.

I KKT conditions are necessary; they give us a goal in optimization.
I They are also sufficient if gi are convex, hj are affine and some

regularity condition holds.
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(Kernel) ridge regression
Recall ridge regression:

min
w,z

1
2‖z‖

2
2 + λ

2‖w‖
2
2

s.t. Xw − y = z,

where we introduced an “artificial” constraint (and variable z).
I Derive the Lagrangian dual:

max
α

min
w,z

1
2‖z‖

2
2 + λ

2‖w‖
2
2 + α>(Xw − y − z),

I Applying Fermat’s condition to the inner minimization problem:

w? = −X>α/λ, z? = α

I Plugging it back in (and simplify) we obtain the dual:

max
α
− 1

2λ‖X
>α‖22 −α>y − 1

2‖α‖
2
2

I Applying Fermat’s condition again we obtain:

α? = −(XX>/λ+ I)−1y.
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Gradient descent ascent (GDA)

min
x∈X

max
y∈Y

f(x,y)

Input: (x0,y0) ∈ dom f ∩ X× Y
s−1 = 0, (x̄−1, ȳ−1) = (0,0) // optional
for t = 0, 1, . . . do

choose step size ηt > 0
xt+1 = PX[xt − ηt∇xf(xt,yt)] // GD on minimization
yt+1 = PY[yt + ηt∇yf(xt,yt)] // GA on maximization
st = st−1 + ηt
(x̄t, ȳt) = st−1(x̄t−1,ȳt−1)+ηt(xt,yt)

st
// averaging

end
The last step incrementally performs averaging:

(x̄t, ȳt) =

t∑
k=1

ηk(xk,yk)/
∑
k

ηk

24 / 25



Variations of GDA
I use different step sizes on x and y;
I use xt+1 in the update on y (or vice versa);
I use stochastic gradients in both steps;
I after every update in x, perform k updates in y (or vice versa);
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